Skip to main content Accessibility help
×
Home

Effect of Composition and Processing on the Microstructure and Magnetic Properties of 2:17 High Temperature Magnets

  • W. Tang (a1), Y. Zhang (a1), D. Goll (a2), H. Kronmüller (a2) and G. C. Hadjipanayis (a1)...

Abstract

A comprehensive and systematic study has been made on Sm(CobalFevCuyZrx)zmagnets to completely understand the effects of composition and processing on their magnetic properties. The homogenized Sm(Co,Fe,Cu,Zr)z magnets have a featureless microstructure. A cellular/lamellar microstructure develops after 2-3 hours of aging at 800-850°C, but the coercivity increases only after a subsequent slow cooling to 400°C. During cooling, diffusion takes place and Cu is concentrated in the 1:5 cell boundaries and Fe in the 2:17R cells. This dilutes the magnetic properties of the 1:5 phase and causes domain wall pinning/nucleation at the cell boundaries. Higher ratio z leads to larger cells as expected due to the larger amount of the 2:17 phase. For a fixed Cu content, this translates to a larger amount of Cu in the 1:5 cell boundaries, and therefore, to a higher coercivity. Magnets without Cu but with Zr have a lamellar and a cellular like microstructure. In Zr free samples, however, a larger amount of Cu is needed to form the cellular microstructure. This cellular microstructure is unstable with prolonged isothermal aging. A uniform and stable cellular/lamellar microstructure is only observed in alloys containing both Cu and Zr. A higher aging temperature Tag leads to larger cells and higher coercivity as explained above. The results of all these studies clearly show that the amount of Cu in the 1:5 cell boundaries controls both the coercivity and its temperature dependence leading to positive and negative temperature coefficients of coercivity in low and high Cu content alloys, respectively.

Copyright

References

Hide All
1. Ray, A. E. and Liu, S., J. Mater. Eng. Perform, 1, 183(1992).
2. Hadjipanayis, G. C., in Rare earth iron permanent magnets, edited by Coey, J. M. D. (Oxford University Press, Inc., New York, 1996).
3. Ray, A. E., J. Appl. Phys., 55, 2094(1984).
4. Kumar, K., J. Appl. Phys., 63, R13(1988).
5. Fidler, J. and Skalicky, P., J. Magn. Magn. Mater., 30, 58(1982).
6. Mishra, R. K., Thomas, G., Yoneyama, T., Fukino, A., and Ojima, T., J. Appl. Phys. 52, 2517(1981).
7. Rabenberg, L., Mishra, R. K., and Thomas, G., J. Appl. Phys., 53, 2389(1982).10.1063/1.330867
8. Liu, J. F., Chui, T., Dimitar, D., and Hadjipanayis, G. C., Appl. Phys. Lett. 73, 3007(1998).
9. Tang, W., Zhang, Y., and Hadjipanayis, G. C., J. Appl. Phys., 87, 5308(2000).
10. Tang, W., Zhang, Y., and Hadjipanayis, G. C., Appl. Phys. Letter., 77, 421(2001).10.1063/1.126996
11. Liu, J. F., Ding, Y., Zhang, Y., Dimitar, D., Zhang, F., and Hadjipanayis, G. C., J. Appl. Phys., 85, 5660(1999).10.1063/1.369832
12. Cataldo, L., Lefevre, A., Ducret, F., Cohen-Adad, M.-Th., Allibert, C., and Valignat, N., J. Alloys Compd., 241,216(1996).
13. Katter, M., Weber, J., W, Assmus, Schrey, P., and Rodewald, W., IEEE Trans. Magn. 32, 4815(1996).10.1109/20.539161
14. Satyanarayana, M. V., Fujii, H., and Wallace, E., J. Appl. Phys. 53, 2374(1982).
15. Tang, W., Zhang, Y., and Hadjipanayis, G. C., J. Magn. Magn. Mater. 212, 138(2000).10.1016/S0304-8853(99)00783-0
16. Tang, W., Zhang, Y., and Hadjipanayis, G. C., J. Appl. Phys., 87, 399(2000).
17. Liu, S. and Hoffman, E. P., IEEE Trans. Magn., 32, 5091(1996).
18. Chen, C., Walmer, M. S., and Walmer, M. H., J. Appl. Phys., 83, 6706(1998).
19. Liu, J. F., Ding, Y., and Hadjipanayis, G. C., J. Appl. Phys.,85, 1670(1999).10.1063/1.369304
20. Kronmuller, H., in Magnetic hysteresis in novel magnetic materials, NATO ASI Series, 338(1997).
21. Zhang, Y., Tang, W., and Hadjipanayis, G. C., Proceedings of the sixteenth international workshop on rare earth magnets. pp167177, Sept. 14, 2000, Sendai, Japan.
22. Barbara, B. and Uehara, M., IEEE Trans. Magn., 12, 997(1976).10.1109/TMAG.1976.1059211
23. Deryagin, A. V., J. Physique, 40, 165(1979).
24. Ermolenko, A. S., IEEE Trans. Magn., 12, 992(1976).10.1109/TMAG.1976.1059178
25. Livingston, J. D., J. Appl. Phys., 46, 5259(1975).

Effect of Composition and Processing on the Microstructure and Magnetic Properties of 2:17 High Temperature Magnets

  • W. Tang (a1), Y. Zhang (a1), D. Goll (a2), H. Kronmüller (a2) and G. C. Hadjipanayis (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed