Skip to main content Accessibility help

Effect of Al substitution on Thermoelectric Performance of CuInTe2 compounds

  • Chuandeng Hu (a1), Kunling Peng (a1) (a2), Guiwen Wang (a1) (a2), Lijie Guo (a1), Guoyu Wang (a2) and Xiaoyuan Zhou (a1)...


Thermoelectric CuIn1-xAlxTe2 compounds (x=0, 0.05, 0.1, 0.15, 0.50) have been synthesized by solid state reaction followed by spark plasma sintering. The influence of Al substitution on electrical and thermal transport properties has been investigated in the CuInTe2 compounds. It was found that the Seebeck coefficient and electrical conductivity is reduced by isovalent replacement of In with Al. Our first principle calculation indicates Al substitution leads to the widen band gap, the reduction in the number of degeneracy of valence band and the effective mass. Furthermore, a large reduction in thermal conductivity is achieved through the enhanced phonon scattering via point defect as well as the nano-sized particles observed between grain boundaries and on the grain surface. In spite of the reduced charge transport properties, an improved figure-of- merit ZT is achieved, reaching 0.8 at 800 K, 33% higher in comparison to the pure CuInTe2 compound.


Corresponding author

*Corresponding author: Tel: +86-23-6593-5603; Fax: +86-23-6567-8362 Email:;


Hide All
1. Bell, L. E., Science, 321, 1457 (2008).
2. Zhao, L. D., Dravid, V. P. and Kanatzidis, M. G., Energy Environ. Sci., 7, 251 (2014).
3. Shi, X., Yang, J., Salvador, J. R., Chi, M. F., Cho, J. Y., Wang, H., Bai, S. Q., Yang, J. H., Zhang, W. Q., and Chen, L. D., J. Am. Chem. Soc., 133, 7837 (2011).
4. Chi, H., Kim, H., Thomas, J. C., Shi, G., Sun, K., Abeykoon, M., Bozin, E. S., Shi, X. Y., Li, Q., Shi, X., Kioupakis, E., Ven, A. V., Kaviany, M., and Uher, C., Phys. Rev. B 89, 239904 (2014).
5. Liu, R. H., Xi, L. L., Liu, H. L., Shi, X., Zhang, W.Q. and Chen, L. D., Chem. Commun., 48, 3818 (2012).
6. Plirdpring, T., Kurosaki, K., Kosuga, A., Day, T., Firdosy, S., Ravi, V., Snyder, G. J., Harnwunggmoung, A., Sugahara, T., Ohishi, Y., Muta, H., and Yamanaka, S., Adv. Mater., 24, 3622 (2012).
7. Kosuga, A., Higashine, R., Plirdpring, T., Matsuzawa, M., Kurosaki, K., and Yamanaka, S., Jpn. J. Appl. Phys., 51, 121803 (2012).
8. Tsujii, N. and Mori, T., Appl. Phys. Express, 6, 043001 (2013).
9. Chen, H. J., Yang, C. Y., Liu, H. L., Zhang, G. H., Wan, D. Y., Huang, F. Q.. Cryst. Eng. Comm., 15, 6648 (2013).
10. Cui, J. L., Li, Y. P., Du, Z. L., Meng, Q. S., Zhou, H.. J. Mater. Chem. A., 1, 677 (2013).
11. Wu, W. C., Li, Y. P., Du, Z. L., Meng, Q. S., Sun, Z., Ren, W., Cui, J. L.. Appl. Phys. Lett., 103, 011905 (2013).
12. Cheng, N., Liu, R., Bai, S., Shi, X., Chen, L.. J. Appl. Phys., 115, 163705 (2014).
13. Yang, J. F., Chen, S. P., Du, Z. L., Liu, X. L., Cui, J. L.. Dalton Trans., 43, 15228 (2014).
14. Zhang, J., Liu, R. H., Cheng, N., Zhang, Y. B., Yang, J. H., Uher, Ctirad., Shi, X., Chen, L. D., Zhang, W. Q.. Adv. Mater., 26, 3848 (2014).
15. Wasim, S. M., Rinco ´n, C., Delgado, J.M., Marı ´n, G., J. Phys. Chem. Solid., 66, 1990 (2005).
16. Mobarak, M., Shaban, H.T., Mater. Chem. Phys., 147, 439 (2014).
17. Liu, M. L., Huang, F. Q., Chen, L. D. and Chen, I. W., Appl. Phys. Lett., 94, 202103 (2009).
18. Liu, M. L., Chen, I. W., Huang, F. Q., and Chen, L. D., Adv. Mater., 21, 3808 (2009).
19. Shi, X. Y., Xi, L. L., Fan, J., Zhang, W. Q., and Chen, L. D., Chem. Mater., 22, 6029 (2010).
20. Kohn, W. and Sham, L. J., Phys. Rev., A 140, 1133 (1965).
21. Kresse, G., Furthmüller, J., Phys. Rev., B 54, 11169 (1996) .
22. Kresse, G., Furthmüller, J., Comput. Mater. Sci., 6, 15 (1996).
23. Xie, W. J., He, J. A., Kang, H. J., Tang, X. F., Zhu, S., Laver, M., Wang, S. Y., Copley, J. R. D., Brown, C. M., Zhang, Q. J., and Tritt, T. M., Nano Lett., 10, 3283 (2010).
24. Minnich, A. J., Dresselhaus, M. S., Ren, Z. F., and Chen, G., Energy & Environ. Sci., 2, 466 (2009).
25. Prabukanthan, P. and Dhanasekaran, R., Mater. Res. Bull., 43, 1996 (2008).
26. Zou, D. F., Xie, S. H., Liu, Y. Y., Lin, J. G., Li, J. Y.. J. Alloys Compd., 570, 150 (2013).
27. Pei, Y. Z., Wang, H., Gibbs, Z. M., LaLonde, A. D., and Jeffrey Snyder, G, NPG Asia Materials, 4, e28 (2012).
28. Dahal, T., Jie, Q., Lan, Y. C., Guo, C. F. and Ren, Z. F., Phys. Chem. Chem. Phys., 16, 18170 (2014).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed