Skip to main content Accessibility help
×
Home

Effect of a Channel Length and Drain Bias on the Threshold Voltage of Field Enhanced Solid Phase Crystallization Polycrystalline Thin Film Transistor on the Glass Substrate

  • Won-Kyu Lee (a1), Sang-Myeon Han (a2), Sang-Geun Park (a3), Young-Jin Chang (a4), Kee-Chan Park (a5), Chi-Woo Kim (a6) and Min-Koo Han (a7)...

Abstract

We have fabricated a new magnetic field enhanced solid phase crystallization (FESPC) polycrystalline silicon (poly-Si) thin film transistors (TFTs), which shows the excellent electrical characteristics and superior stability compared with hydrogenated amorphous silicon (a-Si:H) TFTs. The mobility (μ) and threshold voltage (VTH) of p-type TFTs of which the channel width and length are 5 μm and 7 μm, respectively are 31.98 cm2/Vs and -6.14 V, at VDS=-0.1 V. In the FESPC TFTs, the characteristics caused by grain boundary are remarkable due to large number of grain boundaries in the channel compared with poly-Si TFTs. The VTH of the TFT which have 5 μm channel length is smaller than that of 18 μm channel length by 1.36 V, which is considerably large value. It is due to the large number of grain boundaries in the channel and the high lateral electric field. The grain boundary potential barrier height is decreased, when the large lateral electric field is applied (which is called DIGBL effect). As a result of increased mobility, the drain current is increased, and VTH can be decreased. The activation energy (Ea ) is strongly depended on the drain bias and the number of grain boundaries. is decreased, caused by the large drain bias and/or smaller number of grain boundaries. This decreased Ea can be reduced VTH due to increased the drain current. VTH of p-type poly-Si TFT employing FESPC on the glass substrate is affected by channel length and VDS due to energy barrier lowering effect at the grain boundary by increased lateral electrical field.

Copyright

References

Hide All
1 Saafir, A. K., Chung, J. K., Joo, I. S., Huh, J. M., Rhee, J. S., Park, S. K., Choi, B. R., Ko, C. S., Koh, B. S., Hung, J. H., Choi, J. H., Kim, N. D., and Chung, K. H., SID '05 Digest 968 (2005).
2 Lih, J. J., Sung, C. F., Li, C. H., Hsiano, T. H., and Lee, H. H., SID' 04 Digest 1504 (2004).
3 Lee, J.-H., Nam, W.-J., Shin, K.-S., and Han, M.-K., J. Non-Cryst. Solids 352, 1719 (2006).
4 Lee, J.-H., Kim, J.-H., and Han, M.-K., IEEE Electron Device Lett. 26, 897 (2005).
5 Bui, V. D., Bonnassieux, Y., Parey, J. Y., Djeridane, Y., Abramov, A., Cabarrocas, P. R., and Kim, H. J., SID '06 Digest 204 (2006).
6 Lee, S.-W., and Joo, S.-K., IEEE Electron Device Lett. 17, 160 (1996).
7 Yoon, S. Y., Kim, K. H., Kim, C. O., Oh, J. Y., and Jang, J., J. Appl. Phys. 82, 5865 (1997).
8 Sameshima, T., J. Non-Cryst. Solids 227-230, 1196 (1998).
9 Zhao, Y., Wang, W., Yun, F., Xu, Y., Liao, X., Ma, Z., Yue, G., and Kang, G., Sol. Energy Mater. Sol. Cells 62, 43 (2000).
10 Yoon, S. Y., Park, S. J., Kim, K. H., and Jang, J., Thin Solid Films 383, 34 (2001).
11 Ahn, J. H., Lee, J. N., Kim, Y. C., and Ahn, B. T., Curr. Appl. Phys. 2, 135 (2002).
12 Park, S. H., Kim, H. J., Kang, K. H., Lee, J. S., Choi, Y. K., and Kwon, O. M., J. Phys. D: Appl. Phys. 38, 1511 (2005).
13 Kawazu, Y., Kudo, H., Onari, S., and Arai, T., Jpn. J. Appl. Phys. 129, 729 (1990).
14 Hayzelden, C., Bastone, J. L., and Cammarata, R. C., Appl. Phys. Lett. 60, 225 (1992).
15 Choi, Y. J., Kwak, W. K., Park, S. J., Yoon, S. J., Kim, C. O., and Jang, J., SID' 99 Digest 508 (1999).
16 So, B. S., You, Y. H., Kim, H. J., Kim, Y. H., Hwang, J. H., Shin, D. H., Ryu, S. R., Choi, K., and Y. C. Kim in Application of Field-Enhanced Rapid Thermal Annealing to Activation of Doped Polycrystalline Si Thin Films, (Mater. Res. Soc. Proc. 862, 2005) pp. 275280.
17 Song, I.-H., Kang, S.-H., Nam, W.-J., and Han, M.-K., IEEE Electron Device Lett. 24, 580 (2003).
18 Yang, G.-Y., Hur, S.-H., and Han, C.-H., IEEE Trans. Electron Devices 46, 165 (1999).
19 Bonnaud, O., Moammed-Brahim, T., and Ast, D. G. in Thin Film Transistors-Materials and Processes Volume 2-Polycrystalline Silicon Thin Film Transistors, edited by Kuo, Y. (Kluwer Academic Publishers, New York, 2004), p. 37.
20 Malhi, S. D. S., Shichijo, H., Banerjee, S. K., Sundaresan, R., Elahy, M., Pollack, G. P., Richardson, W. F., Shah, A. H., Hite, L. R., Womack, R. H., Chatterjee, P. K., and Lam, H. W., IEEE J. Solid-State Circuits SC-20, 178 (1985).

Keywords

Related content

Powered by UNSILO

Effect of a Channel Length and Drain Bias on the Threshold Voltage of Field Enhanced Solid Phase Crystallization Polycrystalline Thin Film Transistor on the Glass Substrate

  • Won-Kyu Lee (a1), Sang-Myeon Han (a2), Sang-Geun Park (a3), Young-Jin Chang (a4), Kee-Chan Park (a5), Chi-Woo Kim (a6) and Min-Koo Han (a7)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.