Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T09:03:52.588Z Has data issue: false hasContentIssue false

EBIC Spectroscopy - A New Approach to Microscale Characterization of Deep Levels in Semi-Insulating GaAs

Published online by Cambridge University Press:  28 February 2011

C.-J. Li
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
Q. Sun
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
J. Lagowski
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
H.C. Gatos
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

We propose a new approach to the defect characterization in semiinsulating (SI) GaAs which combines the high spatial resolution and scanning capability of the Electron Beam-Induced Current (EBIC) mode of Scanning Electron Microscopy (SEM) with the advantages of optical and thermal spectroscopies employed in the identification of deep levels. In the PHOTO-EBIC approach a DC electron beam and a chopped subbandgap monochromatic light impinge on the SI GaAs through a semi-transparent Au electrode. The photoinduced modulation of the EBIC as a function of the subbandgap energy of incident photons constitutes a structure which corresponds to the photoionization of deep levels. In the thermally stimulated EBIC (TS-EBIC) the deep levels are filled at low temperature by the excess carriers generated by an electron beam. Subsequently, the changes of EBIC as a function of temperature constitute a spectrum of peaks which correspond to different deep levels. The peak position determines the deep level energy while the magnitude of peaks can be used for the assessment of the relative concentration of deep levels located within the small volume probed by the electron beam.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Martin, G.M., Appl. Phys. Lett. 39, 747 (1981).Google Scholar
2. Holmes, D.E., Chen, R.T., Elliott, K.R., and Kirkpatrick, C.G., Appl. Phys. Lett. 43, 305 (1983).Google Scholar
3. Brozel, M.R., Grant, I., Ware, R.M. and Stirland, D.J., Appl. Phys. Lett. 42, 610 (1983).Google Scholar
4. Yokogawa, M., Nishine, S., Sasaki, M., Matsumoto, M., Fujita, K. and Akai, S., Jpn. J. Appl. Phys. 23, L339 (1984).Google Scholar
5. Wakefield, B., Leigh, P.A., Lyons, M.H. and Elliott, C.R., Appl. Phys. Lett. 45, 67 (1984).Google Scholar
6. Tajima, M., Jpn. J. Appl. Phys. 21, L227 (1982).Google Scholar
7. Kaminska, M., Skowronski, M., Lagowski, J., Parsey, J.M. and Gatos, H.C., Appl. Phys. Lett. 43, 302 (1983).Google Scholar
8. Hennel, A.M., Szuszkiewicz, S., Balkanski, M., Martinez, G. and Clerjaud, B., Phys. Rev. B 23, 3933 (1981).Google Scholar
9. Buehler, M.G., Solid St. Electronics 15, 69 (1972).Google Scholar
10. Martin, G.M., in Semi-Insulating III-V Materials, edited by Rees, G.J., Shiva Publishing Ltd., Orpington, UK, 1980, p. 13.Google Scholar
11. Fillard, J.P., Bonnafe, J. and Castagne, M., Solid St. Communications 25, 855 (1984).Google Scholar
12. Kaminska, M., Parsey, J.M., Lagowski, J. and Gatos, H.C., Appl. Phys. Lett. 41, 989 (1982).Google Scholar
13. Levinson, M., Phys. Rev. B. 28, 3660 (1983).CrossRefGoogle Scholar
14. Taniguchi, M. and Ikoma, T., Appl. Phys. Lett. 45, 69 (1984).Google Scholar