Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-24T23:25:36.180Z Has data issue: false hasContentIssue false

The Early Oxynitridation Stages of Hydrogen-Terminated Single-Crystalline Silicon in N2O Ambient

Published online by Cambridge University Press:  17 March 2011

G. F. Cerofolini
Affiliation:
STMicroelectronics, Stradale Primosole 50, 95100 Catania CT, Italy
M. Camalleri
Affiliation:
STMicroelectronics, Stradale Primosole 50, 95100 Catania CT, Italy
G. G. Condorelli
Affiliation:
Department of Chemistry, University of Catania, 95100 Catania CT, Italy
I. L. Fragalà
Affiliation:
Department of Chemistry, University of Catania, 95100 Catania CT, Italy
C. Galati
Affiliation:
STMicroelectronics, Stradale Primosole 50, 95100 Catania CT, Italy
S. Lorenti
Affiliation:
STMicroelectronics, Stradale Primosole 50, 95100 Catania CT, Italy
L. Renna
Affiliation:
STMicroelectronics, Stradale Primosole 50, 95100 Catania CT, Italy
O. Viscuso
Affiliation:
STMicroelectronics, Stradale Primosole 50, 95100 Catania CT, Italy
Get access

Abstract

Oxynitridation of hydrogen-terminated silicon with N2O has been studied by x-ray photoemission spectroscopy. Our analysis has given evidence that the broad N(1s) peak at 398.3 eV usually reported in the literature is preceded by the formation of a very narrow peak at 397.3 eV, attributed to the moiety Si3N in which nitrogen is only marginally oxidized, and two other peaks (previously never reported) at 400.0 eV and 401.5 eV, attributed to the moieties Si2NOSi and SiNO, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Deal, B. E., and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).Google Scholar
2. Massoud, H. Z., Plummer, J. D., and Irene, E. A., J. Electrochem. Soc. 132, 2685 (1985) ibid. 132, 2693 (1985).Google Scholar
3. Gusev, E. P., Lu, H. C., Gustafsson, T., and Garfunkel, E., Phys. Rev. B 52, 1759 (1995).Google Scholar
4. Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M., and Ohwada, M., J. Appl. Phys. 68, 1272 (1990).Google Scholar
5. Cerofolini, G. F., Bruna, G. La, and Meda, L., Appl. Surf. Sci. 93, 255 (1996).Google Scholar
6. Vlad, M. O., Cerofolini, G. F., and Ross, J., J.Phys. Chem. A 103, 4798 (1999).Google Scholar
7. Koyama, N., Endoh, T., Fukuda, H., and Nomura, S., J.Appl. Phys. 79, 1464 (1996).Google Scholar
8. Kim, K., Lee, Y. H., Suh, M.-S., Youn, C.-J., Lee, K.-B., and Lee, H. J., J. Electrochem. Soc. 143, 3372 (1996).Google Scholar
9. Hori, T., Gate Dielectrics and MOS ULSIs (Springer-Verlag, Berlin Heidelberg, 1997).Google Scholar
10. Bouvet, D., Clivaz, P. A., Dutoit, M., Coluzza, C., Almeida, J., Margaritondo, G., and Pio, F., J. Appl. Phys. 79, 7114 (1996).Google Scholar
11. Rignanese, G.-M., Pasquarello, A., Charlier, J.-C., Gonze, X., and Car, R., Phys. Rev. Lett. 79, 5174 (1997).Google Scholar
12. Pasquarello, A., Hybertsen, M. S., and Car, R.,Phys. Rev. Lett. 74, 1024 (1995).Google Scholar
13. Cerofolini, G. F., Caricato, A. P., Meda, L., Re, N., and Sgamellotti, A., Phys. Rev. 61, 14157 (2000).Google Scholar
14. Aoyama, T., Goto, K., Yamazaki, T., and Ito, T., J. Vac. Sci. Technol. 14, 2909 (1996).Google Scholar