Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T11:20:02.381Z Has data issue: false hasContentIssue false

Dynamics of Weakly Connected Solids: Sintering of Polymeric Aerogels

Published online by Cambridge University Press:  21 February 2011

D. W. Schaefer
Affiliation:
Sandia National Laboratories, P. 0. Box 5800, Albuquerque, NM 87185
D. Richter
Affiliation:
Institut Laue-Langevin, 38042 Grenoble, France
B. Farago
Affiliation:
Institut Laue-Langevin, 38042 Grenoble, France
C. J. Brinker
Affiliation:
Sandia National Laboratories, P. 0. Box 5800, Albuquerque, NM 87185
C. S. Ashley
Affiliation:
Sandia National Laboratories, P. 0. Box 5800, Albuquerque, NM 87185
B. J. Olivier
Affiliation:
Sandia National Laboratories, P. 0. Box 5800, Albuquerque, NM 87185
P. Seeger
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545
Get access

Abstract

A combination of small angle scattering (SAS) and neutron spin-echo (NSE) spectroscopy is used to characterize the structure and dynamics of polymeric silica aerogels during sintering. The SAS data indicate that densification at short length scales precedes the densification at longer scales (comparable to that of the pore structure). Interpreted within the fracton model, the NSE data are consistent with an initial decrease in connectivity during relatively early stages of densification.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Boukenter, A., Champagnon, B., Duval, E., Dumas, J., Quinson, J. F. and Serughetti, J., Phys. Rev. Lett. 57, 2391 (1986).Google Scholar
2. Courtens, E., Pelous, J., Phalippau, J., Vacher, R., and Woignier, T., Phys. Rev. Lett. 58, 128 (1987).Google Scholar
3. Tsujimi, Y., Courtens, E., Pelous, J. and Vacher, R., Phys. Rev. Lett. 60, 2757 (1988).Google Scholar
4. Alexander, S. and Orbach, R., J. Phys (Paris) 43, L625 (1982).Google Scholar
5. Conrad, H., Fricke, J. and Reichenauer, G., J. Phys. Colloque (Paris), 24, C4157 (1989).Google Scholar
6. Schaefer, D. W., Brinker, C. J., Richter, D., Farago, B. and Frick, B., to be published.Google Scholar
7. Schaefer, D. W., J. Phys. Colloque, (Paris), 24, C4121 (1989).Google Scholar
8. Schaefer, D. W., Brinker, C. J., Wilcoxon, J. P., Wu, D.-Q., Phillips, J. C., and Chu, B., in Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E. and Ulrich, D. R.. (Mater. Res. Soc Proc. 121, Pittsburgh, PA 1988) pp. 691696.Google Scholar
9. Brinker, C. J., Keefer, K. D., Schaefer, D. W. and Ashley, C. S., J. Non-Cryst. Solids 48, 47 (1982).Google Scholar
10. Schaefer, D. W. and Keefer, K. D., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E. and Ulrich, D. R.. (Mater. Res. Soc. Proc. 73, Pittsburgh, PA 1986) pp 277288.Google Scholar
11. Kingery, W. D., Bowen, H. K. and Uhlmann, D. R., Introduction ta Ceramics, (New York, Wiley-Interscience, 1976).Google Scholar
12. Richter, D., Farago, B., Frick, B., Schaefer, D. W. and Brinker, C. J., to be published.Google Scholar
13. Thorpe, M. F., J. Non. Cryst. Solids 57, 355 (1983)Google Scholar