Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T11:52:38.071Z Has data issue: false hasContentIssue false

“Dynamics of Phase Segrewation in Poly-P-Phenylene Terephtualamide and Amorphous Nylon Molfcular Composites”

Published online by Cambridge University Press:  21 February 2011

Thein Kyu
Affiliation:
Institute of Polymer Engineering, University of Akron, Akron, Ohio 44325
Jan Chang Yang
Affiliation:
Institute of Polymer Engineering, University of Akron, Akron, Ohio 44325
Tsuey Ing Chen
Affiliation:
Institute of Polymer Engineering, University of Akron, Akron, Ohio 44325
Get access

Abstract

Time-resolved light scattering has been employed to elucidate the dynamics of phase segregation of poly-p-phenylene terephthalamide (PPTA)/ amorphous nylon (AN) molecular composites. Miscible PPTA/AN blends can be prepared from sulfuric acid solution by rapidly coagulating the solution in distilled water. The composites, however, undergo phase segregation upon thermal treatment and exhibit a miscibility window reminiscent of a lower critical solution temperature (LCST). Several temperature-jump experiments were undertaken from ambient to a two-phase temperature region of 240, 250 and 260°C. Time-evolution of scattering profiles are analyzed in accordance with non-linear and dynamical scaling theories.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Helminiak, T.E., Benner, C.L. and Arnold, F.E., Polym. Prep. ACS 16(2), 659 (1975).Google Scholar
2. Hwang, W.F., Wiff, D.R., Benner, C.L. and Helminiak, T.E., J. Macromol. Sci. Phys. B22, 231 (1983).Google Scholar
3. Hwang, W.F., Wiff, D.R., Verschoore, C., Polym. Eng. Sci. 23, 789 (1983); ibid. 23, 784 (1983).Google Scholar
4. Wiff, D.R., Timms, S., Helminiak, T.E. and Hwang, W.F., Polym. Eng. Sci. 27, 424 (1987).Google Scholar
5. Takayanagi, M. and Kajiyama, T., U.K. Patent No. 2,008,598 (1978).Google Scholar
6. Takayanagi, M., Ogata, T., Morikawa, M. and Kai, T., J. Macromol. Sci. Phys. B17, 591 (1980).Google Scholar
7. Takayanagi, M., Pure Appl. Chem. 55, 819 (1983).Google Scholar
8. Yamada, K., Uchida, M. and Takayanagi, M., J. Appl. Polym. Sci. 32, 5231 (1986).Google Scholar
9. Flory, P.J., Macromolecules 11, 1138 (1978).Google Scholar
10. Chuah, H.H., Kyu, T. and Helminiak, T.E., Polymer 28, 2129 (1987).Google Scholar
11. Chuah, H.H., Kyu, T. and Helminiak, T.E., Polymer 30, 1591 (1989).Google Scholar
12. Kyu, T., Chen, T.I., Park, H.S. and White, J.L., J. Appl. Polym. Sci. 37, 201 (1989).Google Scholar
13. Chen, T.I. and Kyu, T., Polym. Commun., submitted.Google Scholar
14. Binder, K. and Stauffer, D., Phys. Rev. Lett. 33, 1006 (1974).Google Scholar
15. Langer, J.S., Bar-on, M. and Miller, H.D., Phys. Rev. A, 11, 1417 (1975).Google Scholar
16. Marro, J., Lebowitz, J.L. and Kalos, M.H., Phys. Rev. Lett. 43, 282 (1979).Google Scholar
17. Siggia, E.D., Phys. Rev. A, 20, 595 (1979).Google Scholar
18. Furukawa, H., Phys. Rev. Lett. 43, 136 (1979); Phys. Rev. A, 23, 1535 (1981).Google Scholar
19. Furukawa, H., Physica A, 123, 497 (1984).Google Scholar
20. Binder, K., Phys. Rev. B, 15, 4425 (1977).Google Scholar
21. Furukawa, H., J. Appl. Cryst. 21, 805 (1988).Google Scholar
22. Kyu, T. and Saldanha, J.M., J. Polym. Sci. Polym. Lett. Ed. 26, 33 (1988).Google Scholar
23. Cahn, J.W. and Billiard, J.E., J. Chem. Phys. 29, 258 (1958).Google Scholar
24. Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
25. Hashimoto, T., Itakura, M. and Hasegawa, H., J. Chem. Phys. 85, 6118 (1986).Google Scholar