Skip to main content Accessibility help

Dynamic Compressive Strength of Cementitious Materials

  • L. E. Malvern (a1), T. Tang (a1), D. A. Jenkins (a1) and J. C. Gong (a1)


Finite-element codes for structural response of reinforced concrete use as a parameter the unconfined compressive strength of the concrete, fc', which is sometimes increased by an arbitrary factor for dynamic loading. The objective of this research is to determine the rate dependence of fc' and eventually to model the rate-dependent constitutive behavior. Results of tests with a small Kolsky bar system and of a newly built larger system on concrete with a maximum aggregate size 1/2 inch are reported with strain rates at the maximum stress from 50 to 800/sec for mortar and from 5 to 120/sec for concrete. An apparent rate dependence up to almost twice the static strength is observed for both. The mortar shows an apparent linear dependence, while the high-strength concrete shows an approximately logarithmic dependence on the strain rate at the maximum stress, over the dynamic range observed. Some questions about specimen size effects and about how much of the apparent strain-rate effect is really a lateral inertia confinement effect are as yet unresolved. Continuing research is focused on observation of the lateral motion to assess lateral inertia effects in unconfined specimens and on passive confinement by steel jackets. Future efforts will be directed toward constitutive modeling.



Hide All
1. McHenry, D., and Shideler, J. J., ASTM STP 185, 7282, (1956).
2. Watstein, D., ACI Journal 24, 729744, (1953).
3. Goldsmith, W., Polivka, M. and Yang, T., Experimental Mechanics 66, 6569, (1966).
4. Goldsmith, W., Kenner, V. H. and Ricketts, T. E., Proc. ASCE, J. Structural Division, 94, ST7, 18031827, (1968).
5. Birkimer, D. L. and Lindemann, R., ACI Journal, Proc., 68, 4749, and Supplement No. 68-8, 1971.
6. Griner, G. R., Master's Thesis, University of Florida, 1974; G. R. Griner, R. L. Sierakowski and C. A. Ross, Bulletin No. 45, The Shock and Vibration Information Center, NRL, Washington, D. C., June 1974.
7. Sierakowski, R. L., Malvern, L. E., Collins, J. A., Milton, J. E. and Ross, C. A., Final Report, AFOSR Grant No. 77–3209 and AFAL TR-78-9, University of Florida, Gainesville, Florida, November 30, 1977, 109–110.
8. Read, H. E. and Maiden, C. J., Topical Report 3 SR-707, Systems, Science and Software, La Jolla, CA, August 1971.
9. Gregson, V. G., General Motors Materials and Structures Laboratory, Report MSL-70-30, 1971.
10. Takeda, J., Tachikawa, H. and Fujimoto, K., Proceedings of the Symposium on the Mechanical Behavior of Materials, Kyoto, August 21–24, Vol. II., 479486, (1984).
11. Green, H., Institution of Civil Engineers, Proc. 28, 361396, (1964).
12. Hughes, B. P. and Gregory, R., Institution of Civil Engineers, Proc. 81, 731740, (1968).
13. Atchley, B. L. and Furr, H. L., ACI Journal, 745–756, (November 1967).
14. Seabold, R. H., Technical Report R 695, Naval Civil Engineering Lab, Port Hueneme, CA, September 1970.
15. Hughes, B. P. and Gregory, R., Magazine of Concrete Research, 24, 2536, (1972).
16. Hughes, B. P. and Watson, A. J., Magazine of Concrete Research, 30, 189199, (1978).
17. Kolsky, H., Proc. Phys. Soc. (London) Ser. B. 62, 676704, (1949).
18. Lindholm, U. S., J. Mech. Phys. Solids 12, 317335, (1964).
19. Lindholm, U. S. and Yeakley, L. M., Experimental Mechanics 8, 19, (1968).
20. Nicholas, T., in Impact Dynamics, eds. Zukas, J. A. et al. (Wiley, New York, 1982), 277332.
21. Christensen, R. J., Swanson, S. R. and Brown, W. S., Experimental Mechanics 12, 508513, (1972).
22. Lindholm, U. S., Yeakley, L. M. and Nagy, A., Int. J. Rock. Mech. & Mining Sci. & Geomech. Abstracts 11, 181191, (1974).
23. Lundberg, B., Int. J. Rock Mech. & Mining Sci. & Geomech, Abstr. 13, 187197, (1976).
24. Bhargava, J. and Rehnström, A., Cement and Concrete Research 7, 199208, (1977).
25. Sierakowski, R. L., Malvern, L. E. and Doddington, H., University of Florida, Gainesville, FL, 1981 (unpublished).
26. Tang, T., Malvern, L. E. and Jenkins, D. A., Engineering Mechanics in Civil Engineering, eds. Boresi, A. P. and Chong, K. P., (ASCE, New York, 1984), 663666.
27. Malvern, L. E., Jenkins, D. A., Tang, T. and Ross, C. A., Second Symposium on the Interaction of Non-Nuclear Munitions with Structures, Panama City Beach, Florida, April 15–19, 1985.
28. Kormeling, H. A., Zielinski, A. J. and Reinhardt, H. W., Report No. 5–80-3, Delft University of Technology, Stevin Laboratory, May 1980.
29. Suaris, W. and Shah, S. P., RILEM-CEB-IABSE-Interassociation Symposium on Concrete Structures Under Impact and Impulsive Loading, 3362, Berlin, 1982.
30. Hoff, G. C., Miscellaneous paper C-76-6, U. S. Army Waterways Experiment Station, Vicksburg, Miss., 1979.
31. Glenn, L. A. and Janach, W., International Journal of Fracture 13, 301317, (1977).
32. Young, C. and Powell, C. N., 20th U. S. Symposium on Rock Mechanics, 1979.
33. Bertholf, L. D. and Karnes, C. H., Journal of the Mechanics & Physics of Solids 23, 119, (1975).
34. Follansbee, P. S. and Frantz, C., ASME Journal of Engineering. Materials and Technology, 105, 6166, (1983).
35. Malvern, L. E., Jenkins, D. A. and Tang, T., presented at ASCE Structural Engineering Congress, Chicago, Ill., September, 1985 (unpublished).

Dynamic Compressive Strength of Cementitious Materials

  • L. E. Malvern (a1), T. Tang (a1), D. A. Jenkins (a1) and J. C. Gong (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed