Hostname: page-component-788cddb947-m6qld Total loading time: 0 Render date: 2024-10-19T00:58:33.502Z Has data issue: false hasContentIssue false

Ductile-to-Brittle Transition in MoSi2

Published online by Cambridge University Press:  01 January 1992

S. R. Srinivasan
Affiliation:
Center for Materials Science, Mail Stop K-765 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
R. B. Schwarz
Affiliation:
Center for Materials Science, Mail Stop K-765 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
J. D. Embury
Affiliation:
Center for Materials Science, Mail Stop K-765 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Get access

Abstract

We have studied the mechanical behavior of two fine grained MoSi2 alloys containing 0.61 at% (0.19 wt%) and 0.29 at% (0.09 wt%) oxygen, respectively. By preparing these alloys in almost identical fashion, their only difference was their oxygen content. The mechanical behavior was studied by four-point flexure tests in unnotched specimens between 800°C and 1400°C. We interpret the mechanical behavior data in terms of Davidenkov diagrams which describe the dependence of the apparent ductile-to-brittle transition temperature on the SiO2 content in the alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maxwell, W. A., National Advisory Committee for Aeronautics, Reports RM E9G01 (1949).Google Scholar
2. Schlichting, J., High Temp. - High Press. 10, 241 (1978).Google Scholar
3. Fitzer, E., Rubisch, O., Schlichting, J., and Sewdas, I., Sci. Ceram. 6, XVIII (1973).Google Scholar
4. Carter, D. H., Petrovic, J. J., Honnell, R. E., and Gibbs, W. S., Ceram. Eng. Sci Proc. 10, 1121 (1989).Google Scholar
5. Aikin, R. M. Jr., Scripta Metall. Mater., 26, 1025 (1992).Google Scholar
6. Kimura, K., Nakamura, M., and Hirano, T., J. Mater. Sci. 25, 2487 (1990).Google Scholar
7. Umakoshi, Y., Sakagami, T., Hirano, T., and Yamane, T., Acta Metall. 38, 909 (1990).Google Scholar
8. Mitchell, T. E., Castro, R. G., Petrovic, J. J., Maloy, S. A., Unal, O., and Chadwick, M. M., Mater. Sci and Eng. A155, 241 (1992).Google Scholar
9. Schwarz, R. B., Srinivasan, S. R., Petrovic, J. J., and Maggiore, C. J., Mater. Sci Eng, A155, 75 (1992).Google Scholar
10. Hollenberg, G. W., Terwilliger, G. R., and Gordon, R. S., J. Am. Ceram. Soc. 54, 196 (1971).Google Scholar
11. Davidenkov, N. N., Dinamicheskaya Ispytania Metallov, Moscow, (1936). See also McClintock, F. A. and Argon, A. S., editors, Mechanical Behavior of Materials (Addison Wesley, Reading, Massachussets, 1966), p. 564.Google Scholar