Skip to main content Accessibility help
×
Home

Dry Etching of SiC for Advanced Device Applications

  • J. R. Flemish (a1), K. Xie (a1) and G. F. Mclane (a1)

Abstract

In this paper we review and compare most of the published results on dry etching of silicon carbide using various techniques. The vast majority of reports have used RIE methods due to the wide availability of such reactors. Recently, alternative methods of magnetron enhanced RIE (MIE) and electron cyclotron resonance (ECR) plasmas have been demonstrated. MIE has resulted in extremely high etch rates and ECR etching has resulted in smooth, residue-free surfaces with an ability to control the etched profiles.

Copyright

References

Hide All
1. Palmour, J. W., Carter, C. H. Jr.,, Weitzel, C. E., and Nordquist, K. J., Mat. Res. Soc. Symp. Proc. 339, 133 (1994).
2. Ghezzo, M., personal communications.
3. Steckl, A. J. and Yih, P. H., Appl. Phys. Lett. 60, 1966 (1992).
4. Yih, P. H. and Steckl, A. J., J. Electrochem. Soc. 140, 1813 (1993).
5. Yih, P. H. and Steckl, A. J., J. Electrochem. Soc. 142, 312 (1995).
6. Lehmann, H. W., in Thin Film Processes II, eds. Vossen, J. L. and Kern, W. (Academic, San Diego, 1991) p. 673.
7. Asmussen, J., J. Vac. Sci. Technol. A 7 (3), 883 (1989).
8. Ventzek, P. L. G., Sommerer, T. J., Hoekstra, R. J., and Kushner, M. J., Appl. Phys. Lett. 63, 605 (1993).S. K. Krongelb, IBM Tch. Discl. Bull. 23 (2), 828 (1980).
9. Krongelb, S. K., IBM Tch. Discl. Bull. 23 (2), 828 (1980).
10. Chang, C. Y., Fang, Y. K., Huang, C. F., and Wu, B. S., J. Electrochem. Soc. 132 (2), 418 (1985).
11. Dohmae, S., Shibahara, K., Nishino, S. and Matsunami, H., Jap. J. Appl. Phys. 24, L873 (1985).
12. Kelner, G., Binari, S. C., and Klein, P. H., J. Electrochem. Soc. 134 (1), 253 (1987).
13. Palmour, J. W., Davis, R. F., Wallett, T. M., and Bhasin, K. B., “Dry etching of beta SiC in CF4 and CF4 + O2 mixtures,” J. Vac. Sci. Technol. A 4, 590 (1986).
14. Luther, B. P., Ruzyllo, J., and Miller, D. L., Appl. Phys. Lett. 63, 171 (1993).
15. Pan, W. S. and Steckl, A. J., J. Electrochem. Soc. 137 (1) 212 (1990).
16. Padiyath, R., Wright, R. L., Chaudhry, M. I., and Babu, S. V., Appl. Phys. Lett. 58, 1053 (1991).
17. Wu, J., Parsons, J. D. and Evans, D.R., J. Electrochem. Soc. 142 (2), 669 (1995).
18. McLane, G. F. and Flemish, J. R., unpublished.
19. Flemish, J. R., Xie, K., and Zhao, J. H., Appl. Phys. Lett. 64, 2315 (1994).
20. Flemish, J. R., Xie, K., Buchwald, W., Casas, L., Zhao, J. H., McLane, G., and Dubey, M., Mat. Res. Soc. Symp. Proc. 339, 145 (1994).
21. Xie, K., Flemish, J. R., Zhao, J. H., Buchwald, W. R. and Casas, L., Appl. Phys. Lett. 67, 386 (1995).
22. Kern, W. and Puotinen, D.A., RCA Rev. 31, 187 (1970).
23. Flemish, J. R., in Wide Bandgap Semiconductors and Devices, ed. Ren, F. (Electrochemical Society, Pennington NJ, 1995) Vol 95–21, 231.
24. Melliar-Smith, C. M. and Mogab, C. J., in Thin Film Processes, ed. by Vossen, J. L. and Kern, W. (Academic, San Diego, 1978) p. 540.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed