Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-03T15:21:10.356Z Has data issue: false hasContentIssue false

Drifts surface characterization of Zincblende nanostructured GaN

Published online by Cambridge University Press:  10 February 2011

Kenneth E. Gonsalves
Affiliation:
Polymer Programme at the Institute of Materials Science & Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136
Greg Carlson
Affiliation:
Polymer Programme at the Institute of Materials Science & Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136
Marie-Isabelle Baraton
Affiliation:
LMCTS - ESA 6015 CNRS, Faculté des Sciences, F-87060 Limoges (France)
Get access

Abstract

The use of GaN/polymer nanocomposites in optoelectronics requires a perfect control of the GaN dispersion in the polymer matrix. This cannot be achieved without a good knowledge of the first atomic layer of the GaN nanoparticles. This paper reports the characterization of the surface chemical species of a GaN nanosized powder by diffuse reflectance infrared Fourier transform spectrometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S.J. and Kuo, C., MRS Bulletin 22, 17 (1997).Google Scholar
2. Gonsalves, K.E., Carlson, G., Rangarajan, S.P., Benaissa, M. and José-Yacam´n, M., J. Mater. Chem. 6, 1451 (1996); M. Benaissa, M. José-Yacamán, J.M. Hemandez, Bokhimi, K.E. Gonsalves and G. Carlson, Phys. Rev. B 54, 17763 (1996); K.E. Gonsalves, S.P. Rangarajan, G. Carlson, M. Benaissa, M. José-Yacamán, K. Yang and J. Kumar, Appl. Phys. Lett. 71, 2175 (1997).Google Scholar
3. Griffiths, P.A. and de Haseth, J.A., Fourier Transform Infrared Spectrometry, (J. Wiley&Sons, New-york, 1986) pp. 194202.Google Scholar
4. Grabowski, S.P., Nienhaus, H. and Mönch, W., Surface Science 352–354, 310 (1996).Google Scholar
5. Xie, Y., Qian, Y., Wang, W., Zhang, S. and Zhang, Y., Science 272, 1926 (1996).Google Scholar
6. Baraton, M.-I., J. High Temp. Chem. Processes 3, 545 (1994).Google Scholar
7. Gonsalves, K.E., Carlson, G. and Baraton, M.-I., Mater. Science & Eng. B (1997), in press.Google Scholar
8. Baraton, M.-I., Chen, X. and Gonsalves, K.E., in Molecularly Designed Nanostructured Materials and Composites, edited by Chow, G.-M. and Gonsalves, K.E., (ACS Book 622 Washington DC, 1996) pp. 312333.Google Scholar
9. Estreicher, S.K. and Maric, D.M., in III- Nitride, SiC and Diamond Materials for Electronic Devices, edited by Gaskill, K., Brandt, C.D. and Nemanich, R.J. (Mat. Res. Soc. Proc. 423, Pittsburgh, 1996) pp. 613618.Google Scholar
10. Brandt, M.S., Ager, J.W. III, Götz, W., Johnson, N.M., Harris, J.S. Jr, Molnar, R.J. and Moustakas, T.D., Phys. Rev. B 49, 14758 (1994).Google Scholar
11. Pei, Z.-F. and Ponec, V., Appl. Surface Science 103, 171 (1996).Google Scholar
12. Busca, G. and Lorenzelli, V., Mater. Chem. 7, 89 (1982).Google Scholar
13. Xu, C. and Koel, B.E., J. Chem. Phys. 102, 8158 (1995).Google Scholar
14. Stubenrauch, J., Brosha, E. and Vohs, J.M., Catalysis Today 28, 431 (1996).Google Scholar
15. Vartuli, C.B., Pearton, S.J., Abemathy, C.R., MacKenzie, J.D., Zolper, J.C. and Lambers, E.S., in III-Nitride. SiC and Diamond Materials for Electronic Devices, edited by Gaskill, K., Brandt, C.D. and Nemanich, R.J. (Mat. Res. Soc. Proc. 423, Pittsburgh, 1996) pp. 569574.Google Scholar
16. Lercher, J.A., Noller, H. and Ritter, G., J. Chem. Soc., Faraday Trans. I 77, 621 (1981).Google Scholar
17. Busca, G. and Lorenzelli, V., J. Chem. Soc., Faraday Trans. I 78, 2911 (1982).Google Scholar