Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T12:01:49.186Z Has data issue: false hasContentIssue false

Double-wall Carbon Nanotubes Synthesized by the Abnormal Glow Discharge Plasma Method

Published online by Cambridge University Press:  11 February 2011

Hiromichi Yoshikawa
Affiliation:
FCT Research Laboratory, JFCC, 1–1–1 Higashi, Tsukuba, Ibaraki, Japan
Fumiyuki Hoshi
Affiliation:
FCT Research Laboratory, JFCC, 1–1–1 Higashi, Tsukuba, Ibaraki, Japan
Mutsumasa Kyotani
Affiliation:
FCT Research Laboratory, JFCC, 1–1–1 Higashi, Tsukuba, Ibaraki, Japan
Takefumi Ishikura
Affiliation:
Frontier Technology Laboratory, Tokyo Gas Co., Ltd, 1–7–7 Suehiro, Tsurumi, Yokohama, Kanagawa, Japan
Motoo Yumura
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1–1–1 Higashi, Tsukuba, Ibaraki, Japan
Yoshinori Koga
Affiliation:
National Institute of Advanced Industrial Science and Technology, 1–1–1 Higashi, Tsukuba, Ibaraki, Japan
Get access

Abstract

Double-wall carbon nanotubes (DWCNTs) and single-wall carbon nanotubes (SWCNTs) have been synthesized by the DC abnormal glow discharge plasma CVD method using methane and hydrogen gas on a Si substrate coated with catalyst. Fe(NO3)2 and Mo(CH3COCHCOCH3)2O2 with Al2O3 support were used as catalysts. The growth temperatures were 1000 − 1400°C and the gas pressures were 9kPa - 13kPa. DC plasma was generated between an array of four W cathodes and a Cu disk anode, and the applied power was 4000–10000W (2.5–4.0A per cathode, 400–800V). Samples were characterized by high-resolution transmission electron microscopy (HRTEM) and micro-Raman spectroscopy using 514.5 nm Ar ion laser excitation. The HRTEM images showed that many carbon nanotubes had a concentric cylindrical graphene layer structure (DWCNTs). We measured the diameters of the carbon nanotubes (CNTs) from HRTEM images. The outer diameter of the DWNT was 1.52–1.64nm and the inner diameter of the DWNT was 0.73–0.81nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S.: Nature 354(1991)56.Google Scholar
2. Iijima, S. and Ichihara, T., Nature, 363(1993)603 Google Scholar
3. Guoa, T., Nikolaeva, P., Thessa, A., Colberta, D. T. and Smalley, R. E., Chem. Phys. Lett. 243(1995)49 Google Scholar
4. Journet, C., Bernier, P., Appl. Phys. A 67(1998)1.Google Scholar
5. Ando, Y., Iijima, S., Jpn. J. Appl. Phys. 32(1993)107 Google Scholar
6. Zhao, X., Ohkohchi, M., Wang, M., Iijima, S., Ichihashi, T., Ando, Y., Carbon 35(1997)775 Google Scholar
7. Kajiura, H., Tsutsui, S., Huang, H., Miyakoshi, M., Hirano, Y., Ymada, A., Ata, M., Chem. Phys. Lett. 346(2001)356 Google Scholar
8. Daia, Hongjie, Rinzlera, Andrew G., Nikolaeva, Pasha, Thessa, Andreas, Colberta, Daniel T. and Smalley, Richard E., Chem. Phys. Lett. 260(1996)471 Google Scholar
9. Andrews, R., Jacques, D., Rao, A. M., Derbyshire, F., Qian, D., Fan, X., Dickey, E. C. and Chen, J., Chem. Phys. Lett. 303(1999)467 Google Scholar
10. Bronikowski, M. J., Willis, Pe. A., Colbert, D. T., Smith, K. A., Smalley, R. E., J. Vac. Sci. Technol. A 19(2001)1800 Google Scholar
11. Endoı, M., Takeuchiı, K.i, Koboriı, K., Takahashiı, K., Kroto, H. W., Sarkar, A., Crbon 33(1995)873 Google Scholar
12. Baik, Y. J.,, Lee, J. K., Lee, W. S. and Eun, K. Y., Thin Solid Films 341(1999)202 Google Scholar
13. Zhao, M., Owano, T. G., Kruger, C. H., Diamond Relat. Mater. 10(2001)1565 Google Scholar
14. Cheng, H. M., Li, F., Sun, X., Brown, S. D. M., Pimenta, M. A., Marucci, A., Dresselhaus, G. and Dresselhaus, M. S., Chem. Phys. Lett. 289(1998)602 Google Scholar