Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-08T12:17:18.378Z Has data issue: false hasContentIssue false

Dose Rate Dependence of the Ion Beam Induced Epitaxial Crystallization in Silicon

Published online by Cambridge University Press:  25 February 2011

V. Heera
Affiliation:
Research Center Rossendorf Inc., Institute for Ion Beam Physics and Materials Research, PF 19, O-8051 Dresden, Germany
R. Kögler
Affiliation:
Research Center Rossendorf Inc., Institute for Ion Beam Physics and Materials Research, PF 19, O-8051 Dresden, Germany
W. Skorupa
Affiliation:
Research Center Rossendorf Inc., Institute for Ion Beam Physics and Materials Research, PF 19, O-8051 Dresden, Germany
R. Grötzschel
Affiliation:
Research Center Rossendorf Inc., Institute for Ion Beam Physics and Materials Research, PF 19, O-8051 Dresden, Germany
Get access

Abstract

The dose rate dependence of 300 keV Si+ ion beam induced epitaxial crystallization (IBIEC) of a 200 nm thick amorphous silicon surface layer at 400°C is investigated in the ion dose rate range from 3 · 1010 up to 3 · 1013cm2s−1. The experimental results are compared with theoretical predictions from several models. Special emphasis is given to the influence of the depth distribution of the nuclear energy deposition on the growth process during both the experiment and the theoretical analysis. According to our experimental results the IBIEC rate is indirectly proportional to the fourth root of the dose rate. This is in excellent agreement with a point defect diffusion model of IBIEC considering pairwise defect annihilation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Priolo, F. and Rimini, E., Materials Science Reports 5, 319 (1990).Google Scholar
2. Jackson, K. A., J. Mater. Res. 3, 1218 (1988).CrossRefGoogle Scholar
3. Chaki, T. E., Phil. Mag. Lett. 59, 223 (1989).Google Scholar
4. Heera, V., phys. stat. sol. (a) 114, 599 (1989); Phys. Res. 13, 510 (1990).Google Scholar
5. Priolo, F., Spinella, C. and Rimini, E., Phys. Rev. B 41, 5235 (1990).Google Scholar
6. Nakata, J., Phys. Rev. B 43, 14643 (1991).Google Scholar
7. Carter, G. and Nobes, M. J., J. Mater. Res. 6, 2103 (1991).CrossRefGoogle Scholar
8. Custer, J. S., Battaglia, A., Saggio, M. and Priolo, F., Phys. Rev. Lett. 69, 780 (1992).Google Scholar
9. Williams, J. S., Brown, W. L., Elliman, R. G., Knoell, R. V., Maher, D. M. and Seidel, T. E., Mat. Res. Soc. Symp. Proc. 45, 79 (1985).Google Scholar
10. Linnros, J. and Holmen, G., J. Appl. Phys. 62, 4737 (1987).Google Scholar
11. Linnros, J., Elliman, R. G. and Brown, W. L., J. Mater. Res. 3, 1208 (1988).Google Scholar
12. Heera, V., Kögler, R., Skorupa, W. and Grötzschel, R., submitted to Nucl. Inst. Meth. B Google Scholar
13. to be published elsewhereGoogle Scholar
14. Buryenkov, A. F., Komarov, F. F., Kumakhov, M. A. and Temkin, M. M., Prostranstvennye Raspredeleniya Energii, Vydelennoi v Kaskade Atomnykh Stolkonovenii v Tverdykh Telakh (Energoatomizdat, Moskva, 1985).Google Scholar