Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T07:37:40.126Z Has data issue: false hasContentIssue false

Dopant Uniformity and Concentration in Boron Doped Single Crystal Diamond Films

Published online by Cambridge University Press:  07 March 2012

Shannon. N. Demlow
Affiliation:
Michigan State University, Electrical and Computer Eng., East Lansing, MI 48824, U.S.A.
I. Berkun
Affiliation:
Michigan State University, Electrical and Computer Eng., East Lansing, MI 48824, U.S.A.
M. Becker
Affiliation:
Fraunhofer USA Center for Coatings and Laser Applications, East Lansing, MI 48824, U.S.A.
T. Hogan
Affiliation:
Michigan State University, Electrical and Computer Eng., East Lansing, MI 48824, U.S.A.
T.A. Grotjohn
Affiliation:
Michigan State University, Electrical and Computer Eng., East Lansing, MI 48824, U.S.A. Fraunhofer USA Center for Coatings and Laser Applications, East Lansing, MI 48824, U.S.A.
Get access

Abstract

High quality single crystal boron-doped diamond films are deposited in a microwave plasma-assisted CVD reactor with feedgas mixtures including hydrogen, methane, diborane, and carbon dioxide at reactor pressures of 160 Torr. The effect of diborane levels and other growth parameters on the incorporated boron levels are investigated, and the doping efficiency is calculated over a wide range of boron concentrations. The boron level is investigated using infrared absorption, and compared to SIMS measurements, and defects are shown to affect the doping uniformity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Demlow, S.N., Grotjohn, T.A., Hogan, T., Becker, M. and Asmussen, J., MRS Proceedings (2011) 1282, mrsf10-1282-a05-15 doi:10.1557/opl.2011.444 Google Scholar
2. Achard, J., Silva, F., Issaoui, R., Brinza, O., Tallaire, A., Schneider, H., Isoird, K., Ding, H., Koné, S., Pinault, M.A., Jomard, F., and Gicquel, A., Diam. & Rel. Mater 20 (2011) 145.Google Scholar
3. Kuo, K.P. and Asmussen, J., Diam. & Rel. Mater. 6, (1997) 1097.Google Scholar
4. Collins, A.T. and Williams, A.W.S., J. Phys. C.: Solid St. Phys., 4, (1971) 1789.Google Scholar
5. Gheeraert, E., Deneuville, A. and Mambou, J., Diam. Relat. Mater. 7 (1998) 1509.Google Scholar
6. Davies, G., in: Walker, P/L., Thrower, P.A. (Eds.), The Chemistry and Physics of Carbon, Marcel Dekker, New York, (1977) 1143 Google Scholar
7. Ramamurti, R., Becker, M., Schuelke, T., Grotjohn, T., Reinhard, D. and Asmussen, J., Diam. & Rel. Mater. 17, (2008) 1320.Google Scholar
8. Maeda, H., Ohtsubo, K., Kameta, M., Saito, T., Kusakabe, K., Morooka, S., and Asano, T., Diam. & Rel. Mater. 7 (1998) 88.Google Scholar
9. Ushizawa, K., Watanabe, K., Ando, T., Sakaguchi, I., Nishitani-Gamo, M., Sato, Y., and Kanda, H., Diam. & Rel. Mater. 7 (1998) 1719.Google Scholar
10. Wurzinger, P., Pongratz, P., Hartmann, P., Haubner, R., Lux, B., Diam. & Rel. Mater. 7 (1998) 763.Google Scholar
11. Goodwin, D. G., J. Appl. Phys. 74 (1993) 6888.Google Scholar