Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-01T09:42:41.009Z Has data issue: false hasContentIssue false

Dopant and Strain Dependence of Extended Defect Generation in Silicon by 1-MeV Electron Irradiation

Published online by Cambridge University Press:  25 February 2011

Jan Vanhellemont
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.
Albert Romano-Rodriguez
Affiliation:
LCMM, Departament de Física Aplicada i Electrónica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain.
Get access

Abstract

Results are presented of an in-situ study of 1-MeV electron irradiation induced {113}-defect generation in silicon with boron, phosphorus or arsenic doped surface layers. By 1-MeV electron irradiation in a high voltage transmission electron microscope, {113}-defects are dorni-nandy formed in areas with a well defined dopant concentration range which depends on the tjpe of dopant atom, the irradiation temperature and fluence and the sample thickness. The observations for samples with boron and phosphorus concentration profiles are compared with published data on electron irradiation induced ( 113}-defect formation in uniformly doped silicon. In the present paper first results on heavily arsenic doped silicon are presented. It is shown that ihe observed dopant dependence of the {113}-defect generation can be understood on the basis of known point defect reactions. A few irradiation experiments are also performed on a local isolation structure illustrating for the first time the influence of localised tensile and compressive strain fields on {113} -defect nucleation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fedina, L., Aseev, A., Denisenko, S. and Smirnov, L., Materials Science Forum 10–12, 1123 (1986).CrossRefGoogle Scholar
2. Bender, H. and Vanhellemont, J., phys. stat. sol.(a) 107, 455 (1988).CrossRefGoogle Scholar
3. Takeda, S., Muto, S. and Hirata, M., Materials Science Forum 83–87, 309 (1992).CrossRefGoogle Scholar
4. Urban, K., phys. stat. sol. (a) 56, 157 (1979).CrossRefGoogle Scholar
5. Salisbury, I. and Loretto, M., Phil. Mag. 34, 1057 (1979).Google Scholar
6. Aseev, A., Bolotov, V., Smirnov, L. and Stenin, S., Sov. Phys. Semicond. 13, 764 (1979).Google Scholar
7. Asahi, H., Oshima, R. and Fujita, F., Inst. Phys. Conf. Ser. 59, 454 (1980).Google Scholar
8. Aseev, A. and Astakhov, V., Sov. Phys. Solid State 24, 1163 (1983).Google Scholar
9. Fedina, L. and Aseev, A., phys. stat. sol. (a) 95, 517 (1986).CrossRefGoogle Scholar
10. Hasebe, M., Oshima, R. and Eiichi Fujita, F., Jap. J. Appl. Phys. 25, 159 (1986).CrossRefGoogle Scholar
11. Aseev, A., Fedina, L., Höhl, D. and Bartsch, H., Solid State Phenomena 6&7, 235 (1989).CrossRefGoogle Scholar
12. Hua, G., Oshima, R. and Fujita, F., in “Defect Control in Semiconductors” ed. Sumino, K., Elsevier Science Publishers B.V. (North-Holland), 535 (1990).Google Scholar
13. Fedina, L. and Aseev, A., Sov. Phys. Solid State 32, 33 (1990).Google Scholar
14. Aseev, A., Denisenko, S. and Fedina, L., Sov. Phys. Semicond. 25, 352 (1991).Google Scholar
15. Oshima, R. and Hua, G. C., Ultramicroscopy 39, 160 (1991).CrossRefGoogle Scholar
16. Romano-Rodríguez, A. and Vanhellemont, J., Materials Science Forum 83–87, 303 (1992).CrossRefGoogle Scholar
17. Romano-Rodríguez, A. and Vanhellemont, J., Mat. Res. Soc. Symp. Proc. 262, (1992).Google Scholar
18. Drevinsky, P., Caefer, C., Tobin, S., Mikkelsen, J. Jr, and Kimerling, L., Mat. Res. Soc. Symp. 104, 167 (1988).CrossRefGoogle Scholar
19. Vanhellemont, J. and Romano-Rodríguez, A., to be published.Google Scholar