Skip to main content Accessibility help
×
Home

Domain Structure of a Unique Bacterial Red Light Photoreceptor as Revealed by Atomic Force Microscopy

  • Blaire A. Sorenson (a1), Daniel J. Westcott (a2), Alexandra C. Sakols (a1), J. Santoro Thomas (a1), Perry Anderson (a2), Emina A. Stojković (a2), Stefan Tsonchev (a1) and Kenneth T. Nicholson (a1)...

Abstract

Bacteriophytochromes (BphPs) are red-light photoreceptors found in photosynthetic and nonphotosynthetic bacteria that have been recently engineered as infrared fluorescent tissue markers. Light-induced, global structural changes are proposed to originate within their covalently bound biliverdin chromophore and propagate through the protein. Classical BphPs undergo reversible photoconversion between spectrally distinct light absorbing states, red (Pr) and far-red (Pfr), respectively. RpBph3 (P3), from Rhodopseudomonas palustris, photoconverts between a Pr and a unique near-red (Pnr) light-absorbing state. Due to size and photosensitivity of BphPs, structures of the intact proteins have not been resolved by nuclear magnetic resonance and/or X-ray crystallography. Therefore, structural details about the light and dark-adapted structures of the intact BphPs are not well understood at the molecular level. We have utilized fluid cell atomic force microscopy (AFM) to investigate the domain structure of intact P3 in its light-adapted state (Pnr). By varying the concentration of the protein, deposition time, and the ionic strength of the buffer, the aggregation of P3 on a mica surface can be controlled and single dimers may be observed in a biologically relevant media. Domain resolution has been achieved for several orientations of the dimer on the surface. The structural dimensions of the dimer have been compared to a modeled BphP in its intact form generated using PyMOL software. AFM experiments are currently underway to analyze the dark-adapted state (Pr) of P3 in order to observe the anticipated structural changes. Ultimately, the goal is to use AFM and other surface analytical methods such as scanning tunneling microscopy and electron microscopy to gain new insight into the unique photochemistry of P3.

Copyright

References

Hide All
1. Noack, S., Michael, N., Rosen, R. and Lamparter, T., Biochemistry 46, 41644176 (2007).
2. Noack, S. and Lamparter, T., Methods of Enzymology 423, 203221 (2007).
3. Rockwell, N. C., Su, Y. S. and Lagarias, J. C., Annual Reviews in Plant Biology 57, 837856 (2006).
4. Rockwell, N. C. and Lagarias, J. C., The Plant Cell 18, 414 (2006).
5. Rockwell, N. C., Shang, L., Martin, S. S. and Lagarias, J. C., P. Natl. Acad. Sci. USA 106, 61236127 (2009).
6. Filonov, G. S., Piatkevich, K. D., Ting, L.-M., Zhang, J., Kim, K. and Verkhusha, V. V., Nature Biotechnology 29, 757761 (2011).
7. Bhoo, S. H., Davis, S. J., Walker, J., Karniol, B. and Vierstra, R. D., Nature 414, 776779 (2001).
8. Ulijasz, A. T., Cornilescu, G., Cornilescu, C. C., Zhang, J., Rivera, M., Markley, J. L. and Vierstra, R. D., Nature 463, 250256 (2010).
9. Toh, K. C., Stojkovic, E. A., Rupenyan, A. B., van Stokkum, I. H., Salumbides, M., Groot, M. L., Moffat, K. and Kennis, J. T., J. Phys. Chem. A (2010).
10. Viani, M. B., Pietrasanta, L. I., Thompson, J. B., Chand, A., Gebeshuber, I. C., Kindt, J. H., Richter, M., Hansma, H. G. and Hansma, P. K., Nature: Structural Biology 7(8), 644648 (2000).
11. Sturgis, J. N., Tucker, J. D., Olsen, J. D., Hunter, C. N. and Niederman, R. A., Biochemistry 48(17), 36793698 (2009).
12. Tobias, F. G., Gawedzka, A., Goldmeier, M. S., Sakols, A. C., Stojkovic, E. A., Tsonchev, S. and Nicholson, K. T., Online Proceedings of the Materials Research Society 1465 (2012).
13. Li, H., Zhang, J., Vierstra, R. and Li, H., P. Natl. Acad. Sci. USA 107(24), 1087210877 (2010).
14. The PyMOL Molecular Graphics System, Version 1.5.0.1 Schrödinger, LLC.
15. Yang, X., Kuk, J. and Moffat, K., P. Natl. Acad. Sci. USA 105, 1471514720 (2008).
16. Yang, X., Stojkovic, E. A., Kuk, J. and Moffat, K., P. Natl. Acad. Sci. USA 104, 1257112576 (2007).
17. Necas, D. and Klapetek, P., Cent. Eur. J. Phys. 10(1), 181188 (2012).
18. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L. and Schulton, K., J. Comp. Chem. 26, 17811802 (2005).
19. Voss, N. R. and Gerstein, M., Nucleic Acids Research 38, W555W562 (2010).
20. Bizzarri, A. R. and Cannistraro, S., J. Phys. Chem. B 113(52), 1644916464 (2009).
21. Heyes, C. D., Kobitski, A. Y., Amirgoulova, E. V. and Nienhaus, G. U., J. Phys. Chem. B 108, 1338713394 (2004).

Keywords

Domain Structure of a Unique Bacterial Red Light Photoreceptor as Revealed by Atomic Force Microscopy

  • Blaire A. Sorenson (a1), Daniel J. Westcott (a2), Alexandra C. Sakols (a1), J. Santoro Thomas (a1), Perry Anderson (a2), Emina A. Stojković (a2), Stefan Tsonchev (a1) and Kenneth T. Nicholson (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed