Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-22T08:19:56.606Z Has data issue: false hasContentIssue false

DNA Bonding to CVD Diamond Probed by Scanning Electron-, Fluorescence-, and Atomic force- Microscopy

Published online by Cambridge University Press:  01 February 2011

Christoph E. Nebel
Affiliation:
christoph.nebel@aist.go.jp, Diamond Research Center, AIST, Central 2, 1-1-1, Tsukuba, 305-8568, Japan, 0298614836, 0298612773
Hiroshi Uetsuka
Affiliation:
hiroshi.uetsuka@aist.go.jp, Diamond Research Center, AIST, Central 2, 1-1-1, Tsukuba, 305-8568, Japan
Buhuslav Rezek
Affiliation:
rezek@fzu.cz, Institute of Physics, Cukrovarnicka 10,, Praha, 162 53, Czech Republic
Dongchan Shin
Affiliation:
dongchan.shin@aist.go.jp, Diamond Research Center, AIST, Central 2, 1-1-1, Tsukuba, 305-8568, Japan
Norio Tokuda
Affiliation:
n-tokuda@aist.go.jp, Nanotechnology Research Institute, AIST, Central 2-13, 1-1-1, Tsukuba, 305-8568, Japan
Takako Nakamura
Affiliation:
takako-nakamura@aist.go.jp, Center for Advanced Carbon Material, AIST, Central 2, Tsukuba, 305-8568, Japan
Get access

Abstract

Double stranded desoxyribonucleic acid (ds-DNA) layers, bonded to hydrogen terminated polycrystalline diamond, are characterized by scanning electron (SEM), fluorescence (FM), and atomic force microscopy (AFM). DNA grafting has been achieved using photochemical bonding of ω-unsaturated 10-amino-dec-1-ene molecules. SEM detects local variations of electron affinities on polycrystalline diamond, revealing distinct grain structures. FM applied on fluorescence labeled ds-DNA show laterally varying intensities of typically 20 %, which resembles also grain structure as detected by SEM. Contact and tapping mode AFM characterization reveal a tilted DNA bonding to diamond, dense layer formation which gives rise to smoothening of surface properties. The lateral density variation of DNA is attributed to local variations of the photo-electron emission efficiency which affects the photochemical attachment chemistry of amine linker molecules to diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fodor, S.P.A.; Rava, R.P.; Huang, X.C.; Pease, A.C.; Holmes, C. P.; Adams, C.L. Nature 1993, 364, 555.Google Scholar
2. Saiki, R.K.; Walsh, P.S.; Levenson, C.H.; Erlich, H.A. Proc. Natl. Acad. Sc USA. 1989, 86, 6230.10.1073/pnas.86.16.6230Google Scholar
3. Liu, Q.; Wang, L.; Frutos, A.G.; Condon, A.E.; Corn, R.M.; Smith, L.M. Nature 2000, 403, 175.10.1038/35003155Google Scholar
4. Vo-Dinh, T.; Cullum, B.; Fresenius, J. Anal. Chem. 2000, 366, 540.Google Scholar
5. Millan, K.M.; Spurmanis, A.J.; Mikkelsen, S.R. Electroanalysis 1992, 4, 929.10.1002/elan.1140041003Google Scholar
6. Hashimoto, K.; Ito, K.; Ishimori, Y. Anal. Chem. 1994, 66, 3830.Google Scholar
7. Yang, M.; Kong, R.Y.C.; Kazmi, M.; Leung, K.C. Chem. Lett. 1998, 3, 257.Google Scholar
8. Buriak, J.M. Chem. Rev. 2002, 102, 1271.Google Scholar
9. Bousse, L.; de, Rooji, N.F.; Bergeveld, P. IEEE Trans. Electron Dev. 1983, 30, 1263.10.1109/T-ED.1983.21284Google Scholar
10. Strothers, T.; Hamers, R.J.; Smith, L.M. Nucleic Acids Res. 2000, 28, 3535.Google Scholar
11. Yang, W.; Auciello, O.; Butler, J.E.; Cai, W.; Carlisle, J.A.; Gerbi, J.E.; Gruen, D.M.; Knickerbocker, T.; Lasseter, T.L.; Russell, Jr, J.N.; Smith, L.M.; Hamers, R.J. Nature Materials 2002, 1, 253.Google Scholar
12. Takahashi, K.; Tanga, M.; Takai, O.; Okamura, H., Sakai, Y. Bio. Ind. 2000, 17, 44.Google Scholar
13. Song, K.-S.; Degawa, M.; Nakamura, Y.; Kanazawa, H.; Umezawa, H.; Kawarada, H. Jap. J. Applied Phys. 2004, 43, L814.10.1143/JJAP.43.L814Google Scholar
14. Härtl, A., Schmich, E.; Garrido, J.A.; Hernando, J.; Catharino, S.C.R.; Walter, S.; Feulner, P.; Kromka, A.; Steinmüller, D.; Stutzmann, M. Nature Mat. 2004, 3, 736.Google Scholar
15. Han, S.W.; Nakamura, C.; Obataya, I.; Nakamura, N.; Miyake, J. Bioch. Biophysical Research Com. 2005, 332, 633.10.1016/j.bbrc.2005.04.059Google Scholar
16. Wang, J.; Firestone, A.; Auciello, O.; Carlisle, J.A. Langmuir 2004, 20, 11450.Google Scholar
17. Nichols, B.; Butler, J.E.; Russell, Jr., J.N.; Hamers, R.J. J. Phys. Chem. B 2005, 109, 20938.Google Scholar
18. Nebel, C.E.; Shin, D.; Takeuchi, D.; Yamamoto, T.; Watanabe, H.; Nakamura, T. Langmuir 2006, 22 (13) 5645.10.1021/la052685sGoogle Scholar
19. Nichols, B.M.; Metz, K.M.; Tse, K.-Y.; Butler, J.E.; Russell, Jr.; J.N.; Hamers, R.J. J. Phys Chem. B 2006, 110 (33), 16535.Google Scholar
20. Cui, J.B.; Ristein, J.; Ley, L. Phys. Rev. Lett. 1998, 81, 429.Google Scholar
21. Rezek, B.; Shin, D.; Nakamura, T. Nebel, C.E. J. Am. Chem. Soc. 2006, 128 (12); 3884.Google Scholar
22. Rezek, B.; Nebel, C.E. Diam. Rel. Mat. 2006, 15, 1374.Google Scholar
23. Takeuchi, D.; Nebel, C.E.; Yamasaki, S. J. Appl. Phys. 2006, 99 (8), 086102.10.1063/1.2188070Google Scholar
24. Nebel, C.E.; Rezek, B.; Shin, D.; Watanabe, H. phys. stat. sol. (a) 2006, 203, 13, 3273.Google Scholar
25. Ristein, J.; Riedel, M.; Ley, L. J. Electrochem. Soc. 2004, 151 (10), E315.10.1149/1.1785797Google Scholar
26. Shin, D.; Rezek, B.; Tokuda, N.; Takeuchi, D.; Watanabe, H.; Nakamura, T.; Yamamoto, T.; Nebel, C.E. phys. stat. sol. (a) 2006, 203 (13), 3245.Google Scholar
27. Takahashi, K.; Tanga, M.; Takai, O.; Okamura, H. Diam. Rel. Mat. 2003, 12, 572.Google Scholar
28. Jiang, X.; in: Thin Film Diamond I, Semiconductors and Semimetals Vol.76, Editors: Nebel, C.E., Ristein, J., Elsevier 2003, p. 1.Google Scholar