Skip to main content Accessibility help
×
Home

Divinylmercury as a Precursor in the Metalorganic Molecular Beam Epitaxy of Hg Containing II-VI Materials

  • J. J. Zinck (a1) and D. Rajavel (a1)

Abstract

We have used x-ray photoelectron spectroscopy, temperature programmed desorption, and epitaxial growth experiments to study the feasibility of using divinylmercury (DVHg) as a precursor for metalorganic molecular beam epitaxial (MOMBE) growth of Hg-containing II-VI materials. The surface chemistry associated with the interaction of DVHg and Te was investigated using polycrystalline Te (poly-Te) films as the substrates for DVHg adsorption. nDVHg dissociatively adsorbed on a poly-Te surface at temperatures as low as -118°C. However, the DVHg dissociation probability was temperature dependent and substantially less than unity when extrapolated to typical Hg1−xCdx Te growth temperatures of 150–200°C. Preliminary results from MOMBE growth experiments showed that successful MOMBE growth of HgTe on CdTe//ZnTe//GaAs using DVHg and thermally precracked diethyltellurium was only possible when the DVHg was also thermally precracked. Simultaneous exposure of atomic H and DVHg to a poly-Te surface significantly enhanced the dissociative adsorption of DVHg, indicating that the presence of atomic H in the growth environment may be an effective alternative to precracking DVHg for MOMBE growth.

Copyright

References

Hide All
1. Scribner, D.A., Kruer, M.R., and Killiany, J.M., Proc. IEEE 79, 66 (1991).
2. Faurie, J. P., Million, A., Boch, R., and Tissot, J. L., J. Vac. Sci. Technol. A1, 1593 (1983).
3. Schwartz, J. P., Tung, Tse, and Brebrick, R. F., J. Electrochem. Soc. 128, 438 (1981).
4. Tutt, L. W. in Physical Properties of II-VI Organometallic Source Materials. Hughes monograph, unpublished.
5. Zinck, J. J., Brewer, P. D., and Olson, G. L. in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L.V., Jensen, K.F., Dubois, L.H., and Gross, M.E. (Mater. Res. Soc. Symp. 204, Pittsburgh PA, 1991) pp. 243250.
6. Rajavel, D. and Zinck, J. J., Appl. Phys. Lett. 61, 1534 (1992).
7. Langmuir, I., J. Am. Chem. Soc. 34, 1310 (1912).
8. Smith, J. N. Jr, and Fite, W. L., J. Chem. Phys. 37, 898 (1962).
9. Blum, N. A. and Feldman, Charles, Solid State Comm. 15, 965 (1974).
10. Arias, J. and Singh, J., Appl. Phys. Lett. 55, 1561 (1989).
11. Singh, J. and Arias, J., J. Vac. Sci. Technol. A7, 2562 (1989).
12. Outka, D. A., Surface Sci. Lett. 235, L311 (1990).
13. Redhead, P. A., Vacuum 12, 203 (1962).
14. Chen, A.-B., Sher, A., and Spicer, W.E., J. Vac. Sci. Technol. A1, 1674 (1983).
15. Feldman, R.D., Austin, R.F., and Dayem, A.H., Appl. Phys. Lett. 49, 797 (1986).
16. Coronado, C.A., Ho, E., and Kolodziejski, L.A., Appl. Phys. Lett. 61, 534 (1992).
17. Watanabe, A., Hata, M., and Isu, T., J. Crystal Growth 111, 554 (1991).
18. Suemune, I., Kazuhiko, K., Koui, T., Kishimoto, A., and Yamanishi, M., Jap. J.App. Phys. 9A, 2047 (1991).
19. Benson, S.W. in The Foundations of Chemical Kinetics. (McGraw-Hill, New York, 1960) p. 347
20. Brewer, P.D., private communication.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed