Skip to main content Accessibility help

Dissipation Mechanisms in Thin-Film Silicon Microresonators on Glass Substrates

  • J. Gaspar (a1) (a2), V. Chu (a1) and J. P. Conde (a1) (a2)


The fabrication and characterization of thin-film silicon resonators processed at temperatures below 110°C on glass substrates is described. The microelectromechanical structures consist of surface micromachined bridges of phosphorus-doped hydrogenated amorphous silicon (n+-a-Si:H) deposited by plasma-enhanced chemical vapor deposition (PECVD) suspended over a metallic gate counterelectrode. The structures are electrostatically actuated. Resonance frequencies in the MHz range and quality factors as high as 5000 are observed in vacuum. The effect of the geometrical dimensions of the bridges and of the measurement pressure on the resonance amplitude and frequency is studied. The elementary energy dissipation processes in a-Si:H-based resonators are discussed. At atmospheric pressure, air damping dominates the energy dissipation. In vacuum, intrinsic mechanisms, such as clamping losses and surface losses, control the energy dissipation.



Hide All
1. Judy, Jack W., Smart Mater. Struct. 10, pp. 11151134, 2001.
2. See for example, Maluf, N., An introduction to microelectromechanical systems engineering, Artech House, Boston, 2000.
3. Gaspar, J., Chu, V., Conde, J. P., J. Appl. Phys. 93, pp. 1001810029, 2003.
4. Gaspar, J., Chu, V., Louro, N., Cabeça, R., Conde, J. P., J. Non-Cryst. Solids, 299–302 pp. 12241228, 2002.
5. Gaspar, J., Chu, V., Conde, J. P., IEEE MEMS'2004 Proc., in press.
6. Syllaios, A. J., Schimert, T. R., Gooch, R. W., McCarde, W. L., Ritchey, B. A., Tregilgas, J. H., Mat. Res. Soc. Symp. Proc. 609, pp. A14.4.1–A14.4.6, 2000.
7. See for example, Elwenspoeck, M., Wiegerink, R., Mechanical Microsensors, Springer, Berlin, 2001.
8. See for example, Cleland, A. N., Foundations of Nanomechanics, Springer, New York, 2002.
9. Alpuim, P., Chu, V., Conde, J. P., J. Appl. Phys. 86, pp. 38123821, 1999.
10. Alpuim, P., Chu, V., Conde, J. P., J. Vac. Sci. Technol. A 21, pp. 10481054, 2003.
11. Gaspar, J., Chu, V., Conde, J. P., Mat. Res. Soc. Symp. Proc. 762, pp. A18.1.1– A18.1.5, 2003.
12. Newell, W. E.. Science 161, pp. 13201326, 1968.
13. Gaspar, J., Chu, V., and Conde, J. P., Appl. Phys. Lett., in press, 2003.
14. Yang, J., Ono, T., Esashi, M., J. Microelectromech. Syst. 11, pp. 775783, 2002.
15. Lifschitz, R., Roukes, M. L., Phys. Rev. B 61, pp. 56005609, 2000.
16. See for example, Searle, T. M., Properties of amorphous silicon and its alloys, INSPEC, The Institute of Electrical Engineers, London, 1999.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed