Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T10:27:36.677Z Has data issue: false hasContentIssue false

Dispersion Engineering of Three-Dimensional Silicon Photonic Crystals: Fabrication and Applications

Published online by Cambridge University Press:  26 February 2011

Sriram Venkataraman
Affiliation:
Electrical Engineering, University of Delaware, Newark, DE
Garrett Schneider
Affiliation:
Electrical Engineering, University of Delaware, Newark, DE
Janusz Murakowski
Affiliation:
Electrical Engineering, University of Delaware, Newark, DE
Shouyan Shi
Affiliation:
Electrical Engineering, University of Delaware, Newark, DE
Dennis W. Prather
Affiliation:
Electrical Engineering, University of Delaware, Newark, DE
Get access

Abstract

In this paper, we propose the design and fabrication of buried silicon optical interconnect technology, the sub-surface silicon optical bus (S3B). The proposed approach relies on engineering the dispersion properties of embedded silicon three-dimensional photonic crystals to create sub-micron routing channels and control light propagation. Further, we present a method for the fabrication of buried three-dimensional (3D) photonic-crystal structures using conventional planar silicon micromachining. The method utilizes a single planar etch mask coupled with time-multiplexed, sidewall-passivating, deep anisotropic reactive-ion etching, to create an array of spherical voids with three-dimensional symmetry. Preliminary results are presented that demonstrate the feasibility of realizing chip-scale optical interconnects using our proposed approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] “International Technology Roadmap for Semiconductors, 2001 Edition,” Semiconductor Industry Association (2003).Google Scholar
[2] Franzo, G., Coffa, S., Priolo, F. and Spinella, C., J. Applied Physics 81, 27842793 (1997).Google Scholar
[3] Canham, L.T., Applied Physics Letters 57, 10461048 (1990).Google Scholar
[4] Pavesi, L. and Priolo, F., Nature 408, 440444 (2000).Google Scholar
[5] Ng, W.L., Nature 410, 192194 (2001).Google Scholar
[6] Claps, R. and Jalali, B., Optics Express 11, 17311739 (2003).Google Scholar
[7] Miller, D. A. B., Proc. IEEE 88, 728749 (2000).Google Scholar
[8] Joannopoulos, J.D., Meade, R.D., and Winn, J.N., Photonic Crystals. Princeton, NJ: Princeton Univ. Press, (1995).Google Scholar
[9] Yablonovitch, E., Physical Review Letters 58, 20592062 (1987).Google Scholar
[10] Krauss, T.F., De La Rue, R.M., and Brand, S., Nature (London) 383, 692 (1996).Google Scholar
[11] Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T. and Kawakami, S., Applied Physics Letters 74, 12121214 (1999).Google Scholar
[12] Witzens, J., Loncar, M. and Scherer, A., IEEE Journal of Selected Topics in Quantum Electronics 8, 12461257 (2002).Google Scholar
[13] Wu, L., Mazilu, M. and Krauss, T. F., Journal Of Lightwave Technology 21, 561566 (2003).Google Scholar
[14] Prather, D. W., Shi, S., Pustai, D. M., Sharkawy, A., Chen, C., Venkataraman, S., Murakowski, J. and Schneider, G., Optics Letters 29, 5052 (2004).Google Scholar
[15] Prather, D. W., Murakowski, J., Shi, S. Y., Venkataraman, S., Sharkawy, A., Chen, C. H. and Pustai, D., Optics Letters 27, 16011603 (2002).Google Scholar
[16] Venkataraman, S., Murakowski, J., Adam, T.N, Kolodzey, J. and Prather, D., Microlith, J., Microfab, Microsyst. 3, pp. 248255, Oct (2003).Google Scholar
[17] Yablonovitch, E., Gmitter, T.J, Leung, K.M, Physical Review Letters 67 22952298 (1991).Google Scholar
[18] Lin, S. Y., Fleming, J. G., Hetherington, D. L., Smith, B. K., Biswas, R., Ho, K. M., Sigalas, M. M., Zubrzycki, W., Kurtz, S. R., and Bur, J., Nature 394, 251253 (1998).Google Scholar
[19] Noda, S., Tomoda, K., Yamamoto, N., and Chutinan, A., Science 289, 604606 (2000).Google Scholar
[20] Johnson, S. G. and Joannopoulos, J. D., Applied Physics Letters 77, 34903492 (2000).Google Scholar
[21] Povinelli, M. L., Johnson, S. G., Fan, S. H., and Joannopoulos, J. D., Physical Review B 6407, 075313 (2001).Google Scholar
[22] Roundy, D. and Joannopoulos, J., Applied Physics Letters 82, 38353837 (2003).Google Scholar
[23] Campbell, M., Sharp, D. N., Harrison, M. T., Denning, R. G., and Turberfield, A. J., Nature 404, 5356 (2000).Google Scholar
[24] Cumpston, B. H., Ananthavel, S. P., Barlow, S., Dyer, D. L., Ehrlich, J. E., Erskine, L. L., Heikal, A. A., Kuebler, S. M., Lee, I. Y. S., McCord-Maughon, D., Qin, J. Q., Rockel, H., Rumi, M., Wu, X. L., Marder, S. R., and Perry, J. W., Nature 398, 5154 (1999).Google Scholar
[25] Vlasov, Y. A., Bo, X. Z., Sturm, J. C., and Norris, D. J., Nature 414, 289293 (2001).Google Scholar
[26] LeCompte, M., Gao, X., and Prather, D. W., Applied Optics 40, 59215927 (2001).Google Scholar