Skip to main content Accessibility help

Dislocation Mobilities in GaN from Molecular Dynamics Simulations

  • N. Scott Weingarten (a1)


The results of molecular dynamics (MD) simulations of dislocation glide in GaN using a Tersoff potential are presented. The simulation methodology involves applying a constant shear stress to a single crystal system containing an individual dislocation, with multiple slip systems considered. Upon reaching a steady state, the dislocation velocity as a function of applied stress and temperature are determined. Edge dislocations with a-type Burgers vectors in the basal, prismatic and pyramidal planes have been analyzed over the temperature range of 300-1300K. The results from simulations of c-type edge dislocations at 1300 K are also presented.



Hide All
1 Moram, M. A., Sadler, T. C., Häberlen, M., Kappers, M. J. and Humphreys, C. J., Appl. Phys. Lett. 97, 261907 (2010).
2 Xin, Y., Pennycook, S. J., Browning, N. D., Nellist, P. D., Sivananthan, S., Omnès, F., Beaumont, B., Faurie, J. P. and Gibart, P., Appl. Phys. Lett. 72, 2680 (1998).
3 Bai, J., Wang, T., Comming, P., Parbrook, P., David, J. and Cullis, A., J. Appl. Phys. 99, 023513 (2006).
4 Tang, T. Y., Shiao, W. Y., Lin, C. H., Shen, K. C., Huang, J. J., Ting, S. Y., Liu, T. C., Yang, C., Yao, C. L. and Yeh, J. H., J. Appl. Phys. 105, 023501 (2009).
5 Colby, R., Liang, Z., Wildeson, I. H., Ewoldt, D. A., Sands, T. D., García, R. E. and Stach, E. A., Nano Lett. 10, 1568 (2010).
6 Wu, C.-C., Weingarten, N. S. and Chung, P. W., Phys. Status Solidi C 11, 432 (2014).
7 Hashimoto, T., Wu, F., Speck, J. S. and Nakamura, S., Nature Mater. 6, 568 (2007).
8 ElAfandy, R. T., Majid, M. A., Ng, T. K., Zhao, L., Cha, D. and Ooi, B. S., Adv. Funct. Mater. 24, 2305 (2014).
9 Jones, K., private communication.
10 Li, L., Yang, L., Cao, R., Xu, S. R., Zhou, X., Xue, J., Lin, Z., Ha, W., Zhang, J., Hao, Y., J. Cryst. Growth 387, 1 (2015).
11 Batyrev, I. G., Wu, C.-C., Chung, P. W., Weingarten, N. S. and Jones, K. A., U.S. Army Research Laboratory Technical Report, ARL-TR-6350 (2013).
12 Weingarten, N. S. and Chung, P. W., Scripta Mat. 69, 311 (2013).
13 Harafuji, K., Tsuchiya, T. and Kawamura, L., J. Appl. Phys. 96, 2513 (2004).
14 Osetsky, Y. N. and Bacon, D. J., Modell. Simul. Mater. Sci. Eng. 11, 427 (2003)
15 Plimpton, S.J., Comput, J.. Phys. 117, 119 (1995).
16 Nord, J., Albe, K., Erhart, P. and Nordlund, K., J. Phys. Condens. Matter 15, 5649 (2003).
17 Zhou, X.W., Murdick, D.A., Gillespie, B. and Wadley, H.N.G., Phys. Rev. B 73, 045337 (2006).
18 Zhou, X., Ward, D. K., Wong, B. M., Doty, F. P. and Zimmerman, J. A., J. Phys. Chem. C 116, 17563 (2012).
19 Groh, S., Martin, E. B., Horstemeyer, M. F. and Bammann, D. J., Modell. Simul. Mater. Sci. Eng. 17, 075009 (2009).
20 Hull, D. and Baco, D. J., Introduction to Dislocations (Butterworth-Heinemann, Oxford, 2001), p 195.
21 Yonenaga, I. and Motoki, K., J. Appl. Phys. 90, 6539 (2001).
22 Rodney, D., Phys. Rev. B 76, 144108 (2007).


Dislocation Mobilities in GaN from Molecular Dynamics Simulations

  • N. Scott Weingarten (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed