Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-21T16:59:55.397Z Has data issue: false hasContentIssue false

Discrete dislocation sim ulation of thin film plasticit y

Published online by Cambridge University Press:  18 March 2011

B. von Blanckenhagen
Affiliation:
Max-Planc k-Institute for Metals Researc h, Seestr. 92, D-70174 Stuttgart, German y
P. Gumbsch
Affiliation:
Max-Planc k-Institute for Metals Researc h, Seestr. 92, D-70174 Stuttgart, German y
E. Arzt
Affiliation:
Max-Planc k-Institute for Metals Researc h, Seestr. 92, D-70174 Stuttgart, German y
Get access

Abstract

A discrete dislocation dynamics sim ulation is used to investigate dislocation motion in the confined geometry of a polycrystalline thin film. The repeated activ ation of a Frank-Read source is sim ulated. The stress to activate the sources and to initiate plastic fiow is significantly higher than predicted by models where the dislocations extend o ver the entire film thic kness. An efiective source size, which scales with the grain dimensions, yields fiow stresses in reasonable agreemen t with experimen ts. The infiuence of dislocations deposited at interfaces is investigated by comparing calculations for a film sandwic hed between a substrate and a capping layer with those for a free standing film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Keller, R.-M., Baker, S. P., and Arzt, E., J. Mater. Res. 13, 1307 (1998).Google Scholar
[2]Nix, W. D., Metall. Trans. A 20A, 2217 (1989).Google Scholar
[3]Freund, L. B., J. Appl. Mech. 54, 553 (1987).Google Scholar
[4]Thompson, C. V., J. Mater. Res. 8, 237 (1993).Google Scholar
[5]Kraft, O., Hommel, M., and Arzt, E., Mater. Sci. Eng. A288, 209 (2000).Google Scholar
[6]Venkatraman, R., Bravman, J. C., Nix, W. D., Davies, P. W., Flinn, P. A., and Fraser, D. B., J. Electron. Mater. 19, 1231 (1990).Google Scholar
[7]Jawarani, D., Kawasaki, H., Yeo, I.-S., Rabenberg, L., Start, J. P., and Ho, P. S., J. Appl. Phys. 82, 171 (1997).Google Scholar
[8]Venkatraman, R., Chen, S., and Bravman, J. C., J. Vac. Sci. Technol. A 9, 2538 (1991).Google Scholar
[9]Müllner, P. and Arzt, E., Mater. Res. Symp. Proc. 505, 149 (1998).Google Scholar
[10]Dehm, G. and Arzt, E., Appl. Phys. Lett. 77, 1126 (2000).Google Scholar
[11]Devincre, B. and Condat, M., Acta Metall. Mater. 40, 2629 (1992).Google Scholar
[12]Schwarz, K. W., J. Appl. Phys. 85, 108 (1999).Google Scholar
[13]Blanckenhagen, B. von, Gumbsch, P., and Arzt, E., Modelling Simul. Mater. Sci. Eng. 9, 157 (2001).Google Scholar
[14]Fivel, M. C., Gosling, T. J., and Canova, G. R., Modelling Simul. Mater. Sci. Eng. 4, 581 (1996).Google Scholar
[15]Hartmaier, A., Fivel, M. C., Canova, G. R., and Gumbsch, P., Modelling Simul. Mater. Sci. Eng. 7, 781 (1999).Google Scholar
[16]Embury, J. D. and Hirth, J. P., Acta Metall. Mater. 42, 2051 (1994).Google Scholar
[17]Nix, W. D., Scripta Metall. 39, 545 (1998).Google Scholar