Skip to main content Accessibility help
×
Home

Direct Synthesis of Silicon Nanowires using Silane and Molten Gallium

  • Shashank Sharma (a1), Mahendra K. Sunkara (a1) and Elizabeth C. Dickey (a2)

Abstract

We report for the first time, bulk synthesis of single crystalline silicon nanowires using molten gallium pools and an activated vapor phase containing silane. The resulting silicon nanowires were single crystalline with <100> growth direction. Nanowires contained an unexpectedly thin, non-uniform oxide sheath determined using high-resolution Transmission Electron Microscopy (TEM). Nanowires were tens of nanometers in diameter and tens to hundreds of microns long. The use of activated gas phase chemistry containing solute of interest over molten metal pools of low-solubility eutectics such as gallium offer a viable route to generate nanowire systems containing abrupt compositional hetero-interfaces.

Copyright

Corresponding author

References

Hide All
Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4 (5), 89 (1964).
2. Morales, A.M. and Lieber, C.M., Science 279, 208 (1998).
3. Westwater, J., Gosain, D.P., Tomiya, S., Usui, S., Ruda, H., J. Vac. Sci. Technol. B 15 (3), 554 (1997).
4. Zhang, Y.F., Tang, Y.H., Wang, N., Yu, D.P., Lee, C.S., Bello, I., Lee, S.T., Appl. Phys. Lett. 72 (15), 1835 (1998).
5. Wu, Y. and Yang, P., Chem. Mater. 12, 605 (2000).
6. Cui, Y.. Lauhon, L.J., Gudiksen, M.S., Wang, J., and Lieber, C.M., Appl. Phys. Lett. 78 (15), 2214 (2001).
7. Sunkara, M.K., Sharma, S., Miranda, R., Lian, G., and Dickey, E.C., Appl. Phys. Lett. 79 (10), 1546 (2001).
8. Sharma, S., Sunkara, M.K., Miranda, R., Lian, G., and Dickey, E.C., Proc. MRS Spring 2001 Meeting Vol. 676, Y.1.6.1 (2001).
9. Sharma, S., Sunkara, M.K., Lian, G., and Dickey, E.C., Proc. MRS Fall 2001 Meeting Vol. 703, 123 (2001).
10. Tan, T.Y., Lee, S.T., and Gosele, U., Appl. Phys. A. 74, 423 (2002).
11. Holmes, J.D., Johnston, K.P., Doty, R.C., Korgel, B.A., Science 287, 14711473 (2000).
12. Zianni, X. and Nassiopoulou, A.G., Phys. Rev. B. 65, 035326–1 (2002).
13. Yorikawa, H., Uchida, H., and Muramatsu, S., J. Appl. Phys. 79 (7), 3619 (1996).
14. Thurmond, C.D. and Kowalchik, M., The Bell System Tech. J. 39, 169204 (1960).
15. Turnbull, D., J. Appl. Phys. 21, 1022 (1950).
16. Wu, Y., Fan, R., and Yang, P., Nano Lett. 2 (2), 83 (2002).
17. Gudikson, M.S., Lauhon, L.J., Wang, J., Smith, D.C., and Lieber, C.M., Nature 415, 617 (2002).
18. Chandrasekaran, H. and Sunkara, M.K., MRS Symp. Proc. Vol. 693, 159164, 2001.
19. Sharma, S. and Sunkara, M.K., J. Am. Chem. Soc. 124 (41), 12289 (2002).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed