Skip to main content Accessibility help
×
Home

Direct Study of the Thermal Conductivity in Aluminum Nanowires

  • Nenad Stojanovic (a1), D.H.S. Maithripala (a2), Jordan M. Berg (a3) and Mark Holtz (a4)

Abstract

Thermal conductivity and electrical resistivity of 1 μm long aluminum nanowires, 75, 100, and 150nm in width and 100nm thick, were measured at room temperature. The method consists of microfabricated electrothermal test devices and a model-based data processing approach using finite-element analysis (FEA). The electrical and thermal properties of the nanowires differ significantly from bulk values while electrical resistivity agrees well with theoretical prediction. Electron transport equation models, which adequately describe the resistivity data, consistently underestimate the thermal conductivity. Incorporating a phonon contribution of ˜ 21 W/m·K to the total thermal conductivity is found to accurately describe the measured values.

Copyright

References

Hide All
1 Cahill, D. G. Ford, W. K. Goodson, K. E. Mahan, G. D. Majumdar, A. Maris, H. J. Merlin, R., and Phillpot, S. R. Journal of Applied Physics 93, 793818 (2003).
2 Mayadas, A. F. and Shatzkes, M. Physical Review B 1, 1382 (1970).
3 Sondheimer, E. H. Advances in Physics 50, 499537 (2001).
4 Durkan, C. and Welland, M. E. Physical Review B 61, 14215 (2000).
5 Ou, M. N. Yang, T. J. Harutyunyan, S. R. Chen, Y. Y. Chen, C. D. and Lai, S. J. Applied Physics Letters 92, 063101 (2008).
6 Volklein, F. Proceedings ICT '97. XVI International Conference on Thermoelectrics, p. 711, Dresden, Germany, 2629 Aug 1997.
7 Langer, G. Hartmann, J. and Reichling, M. Review of Scientific Instruments 68, 15101513 (1997).
8 Hochbaum, A. I. Chen, R. Delgado, R. D. Liang, W. Garnett, E. C. Najarian, M. Majumdar, A., and Yang, P. Nature 451, 163167 (2008).
9 Tritt, T. M. Thermal Conductivity: Theory, Properties, and Applications Kluwer, New York, 2004.
10 Chien, H.-C., Yao, D. J. and Hsu, C.-T., Appl. Phys. Lett. 93, 231910 (2008)
11 Stojanovic, N. Jongsin, Y. Washington, E. B. K. Berg, J. M. Holtz, M. W. and Temkin, H., Microelectromechanical Systems, Journal of 16, 12691275 (2007).
12 Lu, X. Shen, W. Z. and Chu, J. H. Journal of Applied Physics 91, 15421552 (2002).
13 Hanaoka, Y. Hinode, K. Takeda, K. and Kodama, D. MATERIALS TRANSACTIONS 43, 16211623 (2002).
14 Zhang, W. Brongersma, S. H. Richard, O. Brijs, B. Palmans, R. Froyen, L. and Maex, K. Microelectronic Engineering 76, 146152 (2004).
15 Feng, B. Li, Z. X. and Zhang, X. Thin Solid Films 517, 28032807 (2009).
16 Majumdar, A. and Reddy, P. Applied Physics Letters 84, 47684770 (2004).
17 Zhou, Y. Anglin, B. and Strachan, A. Journal of Chemical Physics 127 (2007).
18 Slack, G. A. and Galginaitis, S. Physical Review 133, A253 (1964).

Keywords

Direct Study of the Thermal Conductivity in Aluminum Nanowires

  • Nenad Stojanovic (a1), D.H.S. Maithripala (a2), Jordan M. Berg (a3) and Mark Holtz (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed