Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T09:19:14.663Z Has data issue: false hasContentIssue false

The direct measurement of energy barrier height at metal/ polyfluorene derivatives interface by internal photoemission spectroscopy

Published online by Cambridge University Press:  02 February 2011

Eiji Itoh
Affiliation:
Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
Shinya Takaishi
Affiliation:
Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
Get access

Abstract

We have investigated the barrier height for electron injection at the cathode / polyflu-orene derivatives interface by the internal photoemission (IPE) spectroscopy techniques using the “electron only device” structure consisting of TiO2, electron transporting polyimide inter-layer (IL), and polyfluorene derivatives. We also estimated the barrier height by the current analysis based on the Schottky thermal emission current model, and it coincides well to the threshold energy of IPE result only when the energy is lower than 1.1eV. The measured barrier height obtained by IPE linearly increases with both the work-function of cathode materials. However, the slope parameter becomes less than 1 (~0.6) for poly (9,9-dioctylfluorene) (F8) probably due to the interfacial gap states. On the other hand, the slope parameter becomes very small (~0.18) for the poly (9,9-dioctylfluorene)-co- benzo- thiadiazole) (F8BT) probably due to the electron pinning at the cathode/ acceptor interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Afanas’ev, V. V. and Stesmans, A., J. Appl. Phys., 102, 081301 (2007).10.1063/1.2799091Google Scholar
2. Tung, R. T., Materials Science and Engineering, R35, 1(2001).Google Scholar
3. Ishi, H. et al. , Adv. Mater, 11, 605 (1999).Google Scholar
4. Lee, S. T. et al. , Appl. Phys. Lett., 72, 1593 (1998).Google Scholar
5. Tang, et al. , Appl. Phys. Lett., 87, 252110 (2005).10.1063/1.2149178Google Scholar
6. Stiepel, R., Ostendorf, R., Benesch, C., and Zacharias, H., Review of Scientific Instruments, 76, 063109 (2005).10.1063/1.1928192Google Scholar
7. Jonda, Ch., Mayer, A. B. R., Grothe, W., J. Appl. Phys., 85, 6884 (1999).Google Scholar
8. Campbell, I. H. and Smith, D. L., Appl. Phys. Lett., 74, 561(1999).10.1063/1.123145Google Scholar
9. Sigaud, P., Chazalviel, J. N., Oaman, F., J. Appl. Phys., 89, 466 (2001).Google Scholar
10. Itoh, E., Takaishi, S., Miyairi, K., Thin Solid Films, 518, 791 (2009).Google Scholar
11. Heeger, A. J., Yu, W.-L., and Cao, Y., Appl. Phys. Lett., 75, 3270 (1999).Google Scholar
12. Weinfurtner, K.-H., Fujikawa, H., Tokito, S., and Taga, Y., Appl. Phys. Lett., 76, 2502 (2000).Google Scholar
13. Voigt, M., Chappell, J., Rowson, T., Cadby, A., Geoghegan, M., Jones, R. A. L., Lidzey, D. G., Org. Electron., 6, 35 (2005).Google Scholar
14. Itoh, E., Ohmori, Y., Miyairi, K., Jpn. J. Appl. Phys., 43, 817 (2004).10.1143/JJAP.43.817Google Scholar
15. Itoh, E., Nakamichi, H., Miyairi, K., Thin Solid Films, 516, 2562 (2008).Google Scholar
16. Itoh, E., Iwamoto, M., J. Appl. Phys., 81, 1790 (1997).Google Scholar
17. Fowler, R. H., Phys. Rev., 38, 45 (1931).10.1103/PhysRev.38.45Google Scholar
18. Tang, J. X., Lee, C. S., and Lee, S. T., Proc. Int. Symp. Super-Functionality Organic Devices, IPAP Conf. Series 6, 6 (2005).Google Scholar
19. Mönch, W., Appl. Phys. Lett., 88, 112116 (2006).Google Scholar
20. Matsumura, M., Akai, T., Saito, M., Kimura, T., J. Appl. Phys., 79, 264 (1996).Google Scholar