Skip to main content Accessibility help
×
Home

Direct Laser Sintering of metal parts: characterisation and evaluation of joining mechanisms

  • E. Bassoli (a1), A. Gatto (a1), L. Iuliano (a2) and E. Atzeni (a2)

Abstract

Rapid Prototyping and Tooling are playing a more and more important role in the achievement of compressed time-to-market solutions, where prototype parts and tools are produced directly from the CAD model. In particular, Selective Laser Sintering (SLS) of metal powders with liquid phase is frequently applied for the production of inserts for injection moulding of plastic parts.

An experimental campaign has been planned to investigate the surface finish and mechanical performances of Direct Laser Sintering technique, with particular regard to the effect of the laser sintering strategy on the anisotropy of the final part. Tensile specimens of DirectMetal 20 and DirectSteel 20 materials have been produced, with different orientations in regard to laser path.

Rupture surfaces after the tensile tests were observed at the SEM, in order to understand failure mechanisms, whereas the observation of polished sections helped investigating joining phenomena between the particles. The proposed experimental methodology allowed correlating the macroscopic performances to the micro-mechanisms ruling the process, proving that no considerable differences can be noticed between samples produced in the X and Y direction within the plane of powder deposition.

Copyright

References

Hide All
1. Gatto, A., Iuliano, L., “Micro joining mechanisms between metal particles in the SLS technique”, Proc. of 9th European Conference On Rapid Prototyping & Manufacturing, Athens, Greece (2000).
2. Gatto, A., Iuliano, L., J. of Materials Proc. Tech, 118 (1–3), 411416 (2001).
3. Gatto, A., Iuliano, L., “Comparison of rapid tooling techniques for moulds and dies fabrication”, Proc. of Time Compression Technology, Nottingham, UK (1998).
4. Iuliano, L., Gatto, A., Bassoli, E., Azteni, E., Violante, M.G., “Selective Laser Sintering Of Metal Parts: Comparison Of Two Material Systems”, Proc. of 6th A.I.Te.M. Conference, Gaeta, Italy, ISBN 88–89021–01–21 (2003).
5. Khaing, M.W., Fuh, J.Y.H., Lu, L., J. of Materials Proc. Technology, 113, 269272 (2001).
6. Abe, F., Osakada, K., Shiomi, M., Uematsu, K., Matsumoto, M., J. of Materials Proc. Technology, 111, 210213 (2001).
7. Kathuria, Y.P, Surface & Coatings Technology, 116–119, 643647 (1999).
8. Morgan, R.H., Papworth, A.J., Sutcliffe, C., Fox, P., O'Neill, W., J. of Mat. Science, 37, 30933100 (2002).
9. Tolochko, N.K., Laoui, T., Khlopkov, Y.V., Mozzharov, S.E., Titov, V.I., Ignatiev, M.B., Rapid Prototyping J., 6 (3), 155160 (2000).
10. Niu, H.J., Chang, I.T.H., Scripta Materialia, 39 (1), 6772 (1998).
11. Niu, H.J., Chang, I.T.H., Scripta Materialia, 41 (1), 2530 (1999).
12. Niu, H.J., Chang, I.T.H., Scripta Materialia, 41 (11), 12291234 (1999).
13. Tolochko, N., Mozzharov, S., Laoui, T., Froyen, L., Rapid Prototyping J, 9 (2), 6878 (2003).
14. Agarwala, M., Bourell, D., Beaman, J., Marcus, H., Barlow, J., Rapid Prototyping J., 1 (1), 2636 (1995).
15. Anestiev, L. A., Froyen, L., J. of Applied Physics, 86 (7) (1999).
16. Kruth, J.P., Wang, X., Laoui, T., Froyen, L., Assembly Automation, 23 (4), 357371 (2003).
17. Simchi, A., Petzoldt, F., Pohl, H., J. of Materials Proc. Technology, 141, 319328 (2003).
18. Standard Test Methods for Tension Testing of Metallic Materials - Metric, ASTM E8M-01e1, vol. 03.01.

Direct Laser Sintering of metal parts: characterisation and evaluation of joining mechanisms

  • E. Bassoli (a1), A. Gatto (a1), L. Iuliano (a2) and E. Atzeni (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed