Skip to main content Accessibility help
×
Home

Direct Electronic Control of Biomolecular Systems: Using Nanocrystals as Antennas for Regulation of Biological Activity

  • Kimberly Hamad-Schifferli (a1), John J. Schwartz (a2), Aaron T. Santos (a1), Shuguang Zhang (a3) and Joseph M. Jacobson (a1)...

Abstract

We report a means of directly controlling DNA dehybridization by radio frequency magnetic field coupling to a nanometer scale antenna covalently linked to the DNA. The method of control relies on induction heating of an Au nanocrystal, which raises the temperature of a biomolecule to which it is covalently bound, while leaving surrounding molecules relatively unaffected. Because heat dissipation in biomolecules in solution is rapid(<50 picoseconds[1]) this switching is reversible. This technique is specific, reversible, and non-optical. Since it can be used in solution, it has the potential to be extended to systems in vivo. The ability to differentially control local temperature forms the basis of control of properties such as hybridization and enzyme activity, and has the potential of controlling many biological processes.

Copyright

References

Hide All
1. Lian, T., Locke, B., Kholodenko, Y., and Hochstrasser, R. M., J. Phys. Chem., vol. 98, pp. 1164811656, 1994.
2. Orfeuil, M., Electric Process Heating: Technologies/ Equipment/Applications. Columbus, Ohio: Battelle Press, 1987.
3. Bonnet, G., Tyagi, S., Libchaber, A., and Kramer, F. R., Proc. Natl. Acad. Sci. USA, vol. 96, pp. 61716176, 1999.
4. Hermanson, G. T., Bioconjugate Techniques: Academic Press, 1996.
5. Taton, A. T., Mirkin, C. A., and Letsinger, R. L., Science, vol. 289, pp. 17571760, 2000.
6. Loweth, C. J., Caldwell, W. B., Peng, X., Alivisatos, A. P., and Schultz, P. G., Angew. Chem Int. Ed. Engl., vol. 38, 1999.
7. Mattoussi, H., Mauro, J. M., Goldman, E. R., Anderson, G. P., Sundar, V. C., Mikulec, F. V., and Bawendi, M. G., J. Am. Chem. Soc., vol. 122, pp. 1214212150, 2000.
8. Zanchet, D., Micheel, C. M., Parak, W. J., Gerion, D., and Alivisatos, A. P., Nanoletters, vol. 1, pp. 3235, 2001.
9. Bonnet, G., Krichevsky, O., and Libchaber, A., Proc. Natl. Acad. Sci. USA, vol. 95, pp. 86028606, 1998.
10. Yurke, B., Turberfield, A. J., Mills, J., Allen, P., Simmel, F. C., and Neumann, J. L., Nature, vol. 406, pp. 605608, 2000.
11. Mao, C., LaBean, T. H., Reif, J. H., and Seeman, N. C., Nature, vol. 407, pp. 493496, 2000.
12. Elowitz, M. B. and Leibler, S., Nature, vol. 403, pp. 335338, 2000.
13. Gardner, T. S., Cantor, C. R., and Collins, J. J., Nature, vol. 403, pp. 339342, 2000.
14. Zhang, S., Shi, J., Jura, M., Hamad-Schifferli, K., Schwartz, J. J., and Jacobson, J. M., in preparation, 2001.
15. Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F., and Belcher, A. M., Nature, vol. 405, pp. 665668, 2000.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed