Skip to main content Accessibility help
×
Home

Direct atomistic simulation of brittle-to-ductile transition in silicon single crystals

  • Dipanjan Sen (a1), Alan Cohen (a2), Aidan P. Thompson (a3), Adri Van Duin (a4), William A. Goddard III (a5) and Markus J Buehler (a6)...

Abstract

Silicon is an important material not only for semiconductor applications, but also for the development of novel bioinspired and biomimicking materials and structures or drug delivery systems in the context of nanomedicine. For these applications, a thorough understanding of the fracture behavior of the material is critical. In this paper we address this issue by investigating a fundamental issue of the mechanical properties of silicon, its behavior under extreme mechanical loading. Earlier experimental work has shown that at low temperatures, silicon is a brittle material that fractures catastrophically like glass once the applied load exceeds a threshold value. At elevated temperatures, however, the behavior of silicon is ductile. This brittle-to-ductile transition (BDT) has been observed in many experimental studies of single crystals of silicon. However, the mechanisms that lead to this change in behavior remain questionable, and the atomic-scale phenomena are unknown. Here we report for the first time the direct atomistic simulation of the nucleation of dislocations from a crack tip in silicon only due to an increase of the temperature, using large-scale atomistic simulation with the first principles based ReaxFF force field. By raising the temperature in a computational experiment with otherwise identical boundary conditions, we show that the material response changes from brittle cracking to emission of a dislocation at the crack tip, representing evidence for a potential mechanisms of dislocation mediated ductility in silicon.

Copyright

References

Hide All
[1] Freund, L. B., Dynamic Fracture Mechanics (Cambridge Univ. Press, 1990).
[2] Broberg, K. B., Cracks and Fracture (Academic Press, 1990).
[3] Hirth, J. P., and Lothe, J., Theory of Dislocations (Wiley-Interscience, 1982).
[4] Rice, J. R., and Thomson, R. M., Phil. Mag. 29, 73 (1974).
[5] Rice, J. R., J. Mech. Phys. Solids 40, 239 (1992).10.1016/S0022-5096(05)80012-2
[6] Buehler, M. J., and Gao, H., Nature 439, 307 (2006).
[7] Buehler, M. J., Atomistic modeling of materials failure (Springer (New York), 2008).
[8] Gumbsch, P. et al., Science 282, 1293 (1998).
[9] Strachan, A., Cagin, T., and Goddard, W. A., J. Comp.-Aided Mat. Des. 8, 151 (2002).
[10] John, C. S., Philosophical Magazine 32, 1193 (1975).
[11] Khantha, M., and Vitek, V., Acta Materialia 45, 4675 (1997).
[12] Hirsch, P. B., Roberts, S. G., and Samuels, J., Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934–1990) 421, 25 (1989).
[13] Hartmaier, A., and Gumbsch, P., Physica status solidi. B. Basic research 202, 1 (1997).10.1002/1521-3951(199708)202:2<R1::AID-PSSB99991>3.0.CO;2-J
[14] Xin, Y. B., and Hsia, K. J., Acta Materialia 45, 1747 (1997).
[15] Buehler, M. J. et al., Phys. Rev. Lett. 99, 165502 (2007).
[16] Deegan, R. D. et al., Phys. Rev. E 67, 066209 (2003).
[17] Bernstein, N., and Hess, D. W., Physical Review Letters 91, 025501 (2003).
[18] Buehler, M. J., Duin, A. C. T. van, and Goddard, W. A. III , Physical review letters 96, 95505 (2006).
[19] Buehler, M. J., Abraham, F. F., and Gao, H., Nature 426, 141 (2003).
[20] Holland, D., and Marder, M., Phys. Rev. Lett. 80, 746 (1998).
[21] Duin, A. C. T. v. et al., J. Phys. Chem. A 107, 3803 (2003).
[22] Nomura, K. I. et al., Physical Review Letters 99 (2007).
[23] Plimpton, S., Journal of Computational Physics 117, 1 (1995).
[24] Barrett, M. B. R., et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (1994).
[25] Hauch, J. A. et al., Phys. Rev. Lett. 82, 3823 (1999).
[26] Rice, J. R., and Beltz, G. B., J. Mech. Phys. Solids 42, 333 (1994).
[27] Duesbery, M. S., and Joos, B., Philosophical Magazine Letters 74, 253 (1996).
[28] Juan, Y. M., and Kaxiras, E., Philosophical Magazine A 74, 1367 (1996).
[29] Chiang, S. W., Carter, C. B., and Kohlstedt, D. L., Phil. Magazine A 42, 103 (1980).10.1080/01418618008239358
[30] Hirsch, P. B., and Roberts, S. G., Philosophical Magazine A 64, 55 (1991).

Keywords

Direct atomistic simulation of brittle-to-ductile transition in silicon single crystals

  • Dipanjan Sen (a1), Alan Cohen (a2), Aidan P. Thompson (a3), Adri Van Duin (a4), William A. Goddard III (a5) and Markus J Buehler (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed