Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-19T09:39:16.927Z Has data issue: false hasContentIssue false

Dimer Reconstruction at Metal-Silicide/Silicon Interfaces: A First-Principles Study

Published online by Cambridge University Press:  10 February 2011

B. D. Yu
Affiliation:
Fundamental Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba 305–8501, JAPAN, ybd@newton.uos.ac.kr
Y. Miyamoto
Affiliation:
Fundamental Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba 305–8501, JAPAN, ybd@newton.uos.ac.kr
O. Sugino
Affiliation:
Fundamental Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba 305–8501, JAPAN, ybd@newton.uos.ac.kr
A. Sakai
Affiliation:
Fundamental Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba 305–8501, JAPAN, ybd@newton.uos.ac.kr
T. Sasaki
Affiliation:
National Research Institute for Metals, 1–2–1 Sengen, Tsukuba 305, JAPAN
T. Ohno
Affiliation:
National Research Institute for Metals, 1–2–1 Sengen, Tsukuba 305, JAPAN
Get access

Abstract

By employing first-principles total-energy calculations we studied the atomic and chemical structure of NiSi2/Si(001) and CoSi2/Si(001) interfaces that are of great importance in understanding electronic properties, such as the Schottky-barrier height, of metal-silicide/silicon junctions. We found a new structural model that is more stable than previously proposed models of interface structures and well explains existing experimental data. The new interface model consists of sevenfold-coordinated interfacial metals and a 2×1 periodic array of interfacial Si dimers, similar to the Si(001) 2×1 surface reconstruction, reducing the number of dangling bonds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tung, R. T., J. Vac. Sci. Technol. B 11 1546 (1993), and references therein.Google Scholar
2. Yu, B. D., Miyamoto, Y., Sugino, O., Sasaki, T., and Ohno, T., Appl. Phys. Lett. 72, 1176 (1998).Google Scholar
3. Tung, R. T., Phys. Rev. Lett. 52, 461 (1984).Google Scholar
4. Yalisove, S. M., Tung, R. T., and Batstone, J. L., Mater. Res. Soc. Symp. Proc. 116, 439 (1988).10.1557/PROC-116-439Google Scholar
5. Schowalter, L. J. et al., J. Cryst. Growth 57, 2811 (1990).Google Scholar
6. Wang, Z., Aldrich, D. B., Cohen, Y. L., and Nemanich, R. J., Thin Solid Films 270, 555 (1995).10.1016/0040-6090(95)06841-4Google Scholar
7. Tung, R. T., Gibson, J. M., and Poate, J. M., Phys. Rev. Lett. 50, 429 (1983).Google Scholar
8. Hamann, D. R. and Mattheiss, L. F., Phys. Rev. Lett. 54, 2517 (1985).10.1103/PhysRevLett.54.2517Google Scholar
9. Cherns, D., Hetherington, C. J. D., and Humphreys, J. C., Philos. Mag, A 49, 165 (1984).Google Scholar
10. Loretto, D., Gibson, J. M., and Yalisove, S. M., Phys. Rev. Lett. 63, 298 (1989).10.1103/PhysRevLett.63.298Google Scholar
11. Bulle-Lieuwma, C. W. T., de Jong, A. F., and Vandenhoudt, D. E. W., Philos. Mag. A 64, 255 (1991).Google Scholar
12. Chisholm, M. F., Browning, N. D., Pennycook, S. J., Jebasinski, R., and Mantl, S., Appl. Phys. Lett. 64, 3608 (1994).10.1063/1.111214Google Scholar
13. Buschman, V. etal., J Cryst. Growth 191 430 (1998).10.1016/S0022-0248(98)00167-5Google Scholar
14. Tung, R. T., Levi, A. F. J., Sullivan, J. P., and Schrey, F., Phys. Rev. Lett. 66, 72 (1991).Google Scholar
15. Gonze, X. et al., Phys. Rev. B 44, 8503 (1991).10.1103/PhysRevB.44.8503Google Scholar
16. Perdewetal, J. P.., Phys. Rev. B 46, 6671 (1992).Google Scholar
17. Ihm, J., Zunger, A., and Cohen, M. L., J. Phys. C 12, 4409 (1979).Google Scholar
18. Bockstedte, M., Kley, A., Neugebauer, J., and Scheffler, M., Comput. Phys. Commun. 107, 187 (1997); R. Stumpf and M. Scheffler, Comput. Phys. Commun. 79, 447 (1994).Google Scholar
19. Yu, B. D. and Scheffler, M., Phys. Rev. Lett. 77, 1095 (1996); Phys. Rev. B 55, 13916 (1997); Phys. Rev. B 56, R15569 (1997).Google Scholar
20. Wyckoff, R. W. G., Crystal Structures (Interscience, New York, 1963), Vol. 1, 2nd ed.Google Scholar
21. Giauque, P. H., Travail de Diplôme (Institut de Physique Expérimentale Université de Lausanne, Lausanne, 1992).Google Scholar
22. Boyanov, B. I., Goeller, P. T., Sayers, D. E., and Nemanich, R. J., Appl. Phys. Lett. 71 3060 (1997), and references therein.Google Scholar