Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-23T10:56:32.443Z Has data issue: false hasContentIssue false

Diffusional Dynamics Near the Glass Transition in Amorphous Polymer Thin Films

Published online by Cambridge University Press:  10 February 2011

Denise D. Deppe
Affiliation:
Departments of Materials Science and Engineering
John M. Torkelson
Affiliation:
Departments of Materials Science and Engineering Chemical Engineering Northwestern University, Evanston, IL 60208
Get access

Abstract

A novel experimental approach involving the fluorescence nonradiative energy transfer technique is employed to study transport processes in thin polymer films near the glass transition through the measurement of energy transfer efficiency, E. Using a layered thin film sample geometry, values of the small molecule diffusion coefficient, , as low as 8 × 10−16 cm2/sec are measured within diffusion times of 3.5 hours. These studies reveal a significant dependence of both the magnitude and temperature dependence of on diffusant size.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ehlich, D. and Sillescu, H., Macromolecules 23, 1600 (1990).Google Scholar
2. Xia, J. and Wang, C. H., J. Polym. Sci. B: Polym. Phys. 33, 899 (1995), and references therein.Google Scholar
3. Kim, H., Waldow, D. A., Han, C. C., Tran-Cong, Q., and Yamamoto, M., Polym. Commun. 32, 108 (1991).Google Scholar
4. McKusick, B. C., Heckert, R. E., Claims, T. L., Coffman, D. D., and Mower, H. F., J. Am. Chem. Soc. 80, 2806 (1958).Google Scholar
5. Dhinojwala, A., Hooker, J. C., and Torkelson, J. M., J. Non-Cryst. Solids 172–174, 286 (1994).Google Scholar
6. Berlman, I. B., Energy Transfer Parameters of Aromatic Compounds (Academic Press, New York, 1973), p. 28.Google Scholar
7. Lakowicz, J. R., Principles of Fluorescence Spectroscopy (Plenum Press, New York, 1983), p. 306.Google Scholar
8. Deppe, D. D., Dhinojwala, A., and Torkelson, J. M., Macromolecules, submitted.Google Scholar
9. Karim, A., Felcher, G. P., and Russell, T. P., Macromolecules 27, 6973 (1994); S. J. Whitlow and R. P. Wool, Macromolecules 24, 5926 (1991); P. F. Green and E. J. Kramer, Macromolecules 19, 1108 (1986); H. H. Kausch and M. Tirrell, Ann. Rev. Mat. Sci. 19, 341 (1989); and references contained therein.Google Scholar
10. Dhinojwala, A. and Torkelson, J. M., Macromolecules 27, 4817 (1994).Google Scholar
11. Berlman, I. B., Handbook of Fluorescence Spectra of Aromatic Molecules (Academic Press, New York, 1971), p. 383.Google Scholar
12. Dhinojwala, A., Ph.D. Thesis, Northwestern University (1994).Google Scholar
13. Dhinojwala, A., Wong, G. K., and Torkelson, J. M., Macromolecules 26, 5943 (1993).Google Scholar
14. Ferry, J. D., Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980), pp. 287301.Google Scholar
15. Haward, R. N., J. Macromol. Sci. - Rev. Macromol. Chem. C42 (2),191 (1970).Google Scholar
16. Dhinojwala, A., Hooker, J. C., and Torkelson, J. M., ACS Symposium Ser. 601, 318 (1995).Google Scholar