Skip to main content Accessibility help
×
Home

Diffusion of Iodine and Technetium-99 Through Waste Encasement Concrete and Unsaturated Soil Fill Material

  • Shas V. Mattigod (a1), Greg A. Whyatt (a2), J. R. Serne (a2) and Marcus I. Wood (a3)

Abstract

An assessment of long-term performance of low level waste-enclosing cement grouts requires diffusivity data for radionuclide species such as, 129I and 99Tc. The diffusivity of radionuclides in soil and concrete media was collected by conducting soil-soil and concrete-soil half-cell experiments. The soil diffusivity coefficients for iodide were 7.03 × 10−8 cm2/s and 2.42 × 10−7cm2/s for soils at 4% and 7% moisture contents, respectively. Iodide diffusivity in soil is a function of moisture content and is about an order of magnitude slower at lower moisture content. The soil diffusivity coefficients for 99Tc were 5.89±0.80 × 10−8 cm2/s (4% moisture content) and 2.04±0.57 × 10−7 cm2/s (7% moisture content), respectively. The soil diffusivity of iodide and 99Tc were similar in magnitude at both water contents, indicating that these ions have similar diffusion mechanisms in unsaturated coarse-textured Hanford soil. The diffusivity of iodide in concrete ranged from 2.07 × 10−14 cm2/s (4% soil moisture content) to 1.31 × 10−12 cm2/s (7% soil moisture content), indicating that under unsaturated soil moisture conditions, iodide diffusivity is highly sensitive to changing soil moisture conditions. Depending on the soil moisture content, the diffusivity of 99Tc in concrete ranged from 4.54 × 10−13 cm2/s to 8.02 × 10−12 cm2/s. At 4% soil moisture content, iodide diffused about 20 times more slowly than 99Tc, and at 7% soil moisture content, iodide in concrete diffused about 6 times slower than 99Tc.

Copyright

References

Hide All
1. Wood, M. I., Khaleel, R., Rittman, P. D., Lu, A. H., Finfrock, S., Serne, R. J. and Cantrell, K. J... Performance Assessment for the Disposal of Low-Level Waste in the 218-W-5 Burial Ground., WHC EP-0645, Westinghouse Hanford Company, Richland, Washington (1995).
2. Mann, F. M., Puigh, R. J. II, Rittmann, P. D., Kline, N. W., Voogd, J. A., Chen, Y., Eiholzer, C. R., Kincaid, C. T., McGrail, B. P., Lu, A. H., Williamson, G. F., Brown, N. R. and LaMont, P. E.. Hanford Immobilized Low-Activity Tank Waste Performance Assessment. DOE/RL-97-69, Rev. 0, U.S. Department of Energy, Richland, Washington (1998).
3. Serne, R. J., Martin, W. J., LeGore, V. L., Lindenmeier, C. W., McLaurine, S. B., Martin, P. F. C. and Lokken, R.O.. Leach Tests on Grouts Made with Actual and Trace Metal-Spiked Synthetic Phosphate/Sulfate Waste. PNL-7121. Pacific Northwest Laboratory, Richland, Washington (1989).
4. Serne, R. J., Lokken, R. O. and Criscenti, L. J., Waste Management, 12, 271287 (1992).
5. Serne, R. J., Ames, L. L., Martin, P. F., LeGore, V. L., Lindenmeier, C. W. and Phillips, S. J.. Leach Testing of in Situ Stabilization Grouts Containing Additives to Sequester Contaminants, PNL-84 Pacific Northwest Laboratory, Richland, Washington (1992).
6. Serne, R. J., Martin, W. J. and LeGore, V. L.. Leach Test of Cladding Removal Waste Grout Using Hanford Groundwater. PNL-10745, Pacific Northwest Laboratory, Richland, Washington (1995).
7. Crank, J.,. The Mathematics of Diffusion. Second Edition. Oxford University Press, New York (1975).
8. Finney, D. J., Probit Analysis, Third edition, Cambridge University Press, New York (1971)
9. Brown, D. A., Fulton, B. E. and Phillips, R. E., Soil Sci. Soc. Am. Proc., 28, 628632 (1964).
10. Lamar, D. A., Measurement of Nitrate Diffusivity in Hanford Sediments via the Half-Cell Method Letter Report to Westinghouse Hanford Company, Pacific Northwest National Laboratory, Richland, Washington (1989).
11. Martin, P. F., Serne, R. J., Legore, V. L and Lindenmeier, C. W. Status Report on Ionic Diffusion Through Asphalt. Letter Report to Westinghouse Hanford Company. HGTP-93-0602-01. Pacific Northwest Laboratory, Richland, Washington (1994).
12. Crane, P. J., Benny, H. L. and Wood, M. I.. Physical Modeling of Contaminant Diffusion from Cementitious Waste Form. WHC-SA-1345-FP. Westinghouse Hanford Company, Richland, Washington (1992).
13. Pourbaix, M., Atlas of Electrochemical Equilibria. Pergamon Press, Oxford, England (1966).
14. Atkinson, A. and Nickerson, A. K.. Nucl. Tec. 81, 100113 (1988).

Diffusion of Iodine and Technetium-99 Through Waste Encasement Concrete and Unsaturated Soil Fill Material

  • Shas V. Mattigod (a1), Greg A. Whyatt (a2), J. R. Serne (a2) and Marcus I. Wood (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed