Skip to main content Accessibility help
×
Home

Diffusion Modeling in Compacted Bentonite Based on Modified Gouy-Chapman Model

  • Kenji Yotsuji (a1), Yukio Tachi (a1) and Yuichirou Nishimaki (a2)

Abstract

The integrated sorption and diffusion (ISD) model has been developed to quantify radionuclide transport in compacted bentonite. The current ISD model, based on averaged pore aperture and the Gouy-Chapman electric double layer (EDL) theory can quantitatively account for diffusion of monovalent cations and anions under a wide range of conditions (e.g., salinity, bentonite density). To improve the applicability of the current ISD model for multivalent ions and complex species, the excluded volume effect and the dielectric saturation effect were incorporated into the current model, and the modified Poisson-Boltzmann equations were numerically solved. These modified models had little effect on the calculation of effective diffusivity of Sr2+/Cs+/I. On the other hand, the model, modified considering the effective electric charge of hydrated ions, calculated using the Gibbs free energy of hydration, agreed well with the diffusion data including those of Sr2+.

Copyright

References

Hide All
1. Ochs, M., Lothenbach, B., Wanner, H., Sato, H., Yui, M., J. Contam. Hydrol. 47, 283296 (2001).
2. Tachi, Y., Nakazawa, T., Ochs, M., Yotsuji, K., Suyama, T., Seida, Y., Yamada, N., Yui, M., Radiochim. Acta 98, 711718 (2010).10.1524/ract.2010.1772
3. Tachi, Y. and Yotsuji, K., in abstract book of the 5th meeting on international meeting “Clays in Natural and Engineered Barriers for Radioactive Waste Confinement” (2012).
4. Tachi, Y. and Yotsuji, K., Geochim. Cosmochim. Acta, accepted (2013).
5. Lyklema, J. and Overbeek, J. Th. G., J. Colloid Sci. 16, 501 (1961).10.1016/0095-8522(61)90029-0
6. Verwey, E.J.W. and Overbeek, J.Th.G., Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948).
7. Carter, D.L., Heilman, M.D. and Gonzalez, C.L., Soil Sci. 100, 356 (1965).10.1097/00010694-196511000-00011
8. Gur, Y., Ravina, I. and Babchin, A. J., J. Colloid Interface Sci. 64, 326, 333 (1978).10.1016/0021-9797(78)90368-5
9. Basu, S. and Sharma, M.M., J. Colloid Interface Sci. 165, 355 (1994).10.1006/jcis.1994.1241
10. Paunov, V.N., Dimova, R.I., Kralchevsky, P.A., Broze, G. and Mehreteab, A., J. Colloid Interface Sci. 182, 239 (1996).
11. Lehikoinen, J., Muurinen, A. and Olin, M., Mater. Res. Soc. Proc. 506, 383 (1998).
12. Gerald, C.F. and Wheatley, P.O., Applied Numerical Analysis (5th ed.), Addison-Wesley Publishing Company, Inc. (1994).
13. Nightingale, E.R. Jr., J. Phys. Chem. 63, 1381 (1959).
14. Shannon, R.D., Acta Cryst. A32, 751 (1976).10.1107/S0567739476001551
15. Marcus, Y., Ion Properties, Marcel Dekker, Inc., New York (1997).
16. Booth, F., J. Chem. Phys. 19, 391, 1327, 1615 (1951).
17. Stokes, R.H., J. Am. Chem. Soc. 86, 979 (1964).
18. Ohtaki, H., Hydration of the Ion, Kyoritsu Shuppan, Tokyo (1990) [in Japanese].

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed