Skip to main content Accessibility help
×
Home

Diffusion and Defect Structure in Nitrogen Implanted Silicon

  • Omer Dokumaci (a1), Richard Kaplan (a1), Mukesh Khare (a1), Paul Ronsheim (a1), Jay Burnham (a2), Anthony Domenicucci (a1), Jinghong Li (a1), Robert Fleming (a1), Lahir S. Adam (a3) and Mark E. Law (a3)...

Abstract

Nitrogen diffusion and defect structure were investigated after medium to high dose nitrogen implantation and anneal. 11 keV N2 + was implanted into silicon at doses ranging from 2×1014 to 2×1015 cm−2. The samples were annealed with an RTA system from 750°C to 900°C in a nitrogen atmosphere or at 1000°C in an oxidizing ambient. Nitrogen profiles were obtained by SIMS, and cross-section TEM was done on selected samples. TOF-SIMS was carried out in the oxidized samples. For lower doses, most of the nitrogen diffuses out of silicon into the silicon/oxide interface as expected. For the highest dose, a significant portion of the nitrogen still remains in silicon even after the highest thermal budget. This is attributed to the finite capacity of the silicon/oxide interface to trap nitrogen. When the interface gets saturated by nitrogen atoms, nitrogen in silicon can not escape into the interface. Implant doses above 7×1014 create continuous amorphous layers from the surface. For the 2×1015 case, there is residual amorphous silicon at the surface even after a 750°C 2 min anneal. After the 900°C 2 min anneal, the silicon fully recrystallizes leaving behind stacking faults at the surface and residual end of range damage.

Copyright

References

Hide All
1. Liu, C.T., Ma, Y., Becerro, J., Nakahara, S., Eaglesham, D.J., and Hillenius, S. J., IEEE Electron Device Lett. 18, 105 (1997).
2. Liu, C.T., Ma, Y., Oh, M., Diodato, P.W., Stiles, K.R., McMacken, J.R., Li, F., Chang, C.P., Cheung, K.P., Colonell, J.I., Lai, W.Y.C., Liu, R., Lloyd, E.J., Miner, J.F., Pai, C.S., Vaidya, H., Frackoviak, J., Timko, A., Klemens, F., Maynard, H., and Clemens, J.T., IEDM Tech. Dig., 589 (1998).
3. Liu, C.T., Ma, Y., Luftman, H., and Hillenius, S.J., IEEE Electron Device Lett. 18, 212 (1997).
4. Adam, L.S., Law, M.E., Jones, K.S., Dokumaci, O., Murthy, C.S., and Hegde, S., J. Appl. Phys. 87, 2282 (2000).
5. Adam, L.S., Law, M.E., Dokumaci, O., and Hegde, S., IEDM Tech. Dig., (2000).
6. Dokumaci, O., Ronsheim, P., Hegde, S., Chidambarrao, D., Adam, L.S., and Law, M.E., Mat. Res. Soc. Symp. Vol. 610, B.5.9.1 (2000).
7. Murakami, T., Kuroi, T., Kawasaki, Y., Inuishi, M., Matsui, Y., and Yasuoka, A., Nucl. Instr. and Meth. in Phys. Res. B 121, 257 (1997).
8. Hakayama, S., and Sakai, T., J. Electrochem. Soc. 144, 4326 (1997).
9. Olson, G.L., and Roth, J.A., Mater. Sci. Rep. 3, 1 (1988).
10. Kennedy, E.F., Csepregi, L., Mayer, J.W., and Sigmon, T.W., J. Appl. Phys. 48, 4241 (1977).
11. Carter, C., Maszara, W., Sadana, D.K., Rozgonyi, G.A., Liu, J., and Wortman, J., Appl. Phys. Lett. 44, 459 (1984).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed