Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T12:36:59.512Z Has data issue: false hasContentIssue false

Differential Anomalous X-Ray Scattering Techniques for Determination of Liquid and Amorphous Structures

Published online by Cambridge University Press:  26 February 2011

W. K. Warburton
Affiliation:
Institute of Physics, University of Southern California 4676 Admiralty Way, Marina del Rey, CA 90292
K. F. Ludwig Jr.
Affiliation:
Department of Applied Physics Stanford University, Stanford, CA 94305
L. Wilson
Affiliation:
Department of Applied Physics Stanford University, Stanford, CA 94305
A. Bienenstock
Affiliation:
Department of Applied Physics Stanford University, Stanford, CA 94305
Get access

Abstract

The differential anomalous scattering technique is outlined and compared to other techniques for studying short-range order in amorphous systems, such as EXAFS. The differential distribution functions obtained for liquid GeBr4 were found to support a model for the liquid state based on the structure of the h.c.p. crystal. Application of the technique to aqueous ZnBr2 also allowed discr imination between structural models.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chandler, D. (1973). J. Chem. Phys. 59, 2742.Google Scholar
Chandler, D., Weeks, J. D. and Andersen, H. C. (1980). Science 220, 787.CrossRefGoogle Scholar
Dennis, L. M. and Hance, F. E. (1922). J. Am. Chem. Soc. 44, 301. Also: Z. Anorg. Chem. 122, 269.Google Scholar
Fuoss, P. H., Warburton, W. K., and Bienenstock, A. (1980). J. Non-Cryst. Solids 35–36, 1233.CrossRefGoogle Scholar
Fuoss, P. H., Eisenberger, P., Warburton, W. K. and Bienenstock, A. (1981). Phys. Rev. Lett. 46, 1537.Google Scholar
Habenschuss, A., Johnson, E., and Narten, A. H. (1981). J. Chem. Phys. 74, 5234.Google Scholar
Keating, D. T. (1963). J. Appl. Phys. 34, 923.Google Scholar
Kortright, J., Warburton, W. K., and Bienenstock, A. (1983). In “EXAFS and Near Edge Structure” (Bianconi, A. et al., eds.), pp. 362372. Springer-Verlag, New York.CrossRefGoogle Scholar
Lagarde, P., Fontaine, A., Raoux, D., Sadoc, A., and Migliardo, P. (1980). J.Chem. Phys. 72, 3061.Google Scholar
Lister, M. W. and Sutton, L. E. (1941). Trans. Faraday Soc. 37, 393.Google Scholar
Lowden, L. J. and Chandler, D. (1974a). J. Chem. Phys. 61, 6587.CrossRefGoogle Scholar
Lowden, L. J. and Chandler, D. (1974b). J. Chem. Phys. 61, 5228.CrossRefGoogle Scholar
Ludwig, K. F. Jr., Wilson, L., Warburton, W. K. and Bienenstock, A. (1985). J. de Physique. Colloque 46, C8, 193.Google Scholar
Ludwig, K. F. Jr., Warburton, W. K., Wilson, L., and Bienenstock, A. (1986). To be published in J. Chem. Phys. Google Scholar
Munro, R. G. (1982). Phys. Rev. B25, 5037.CrossRefGoogle Scholar
Swamy, K. N. and Bhuiyan, L. B. (1980). Phys. Chem. Liq. 9, 169.CrossRefGoogle Scholar