Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T07:24:24.623Z Has data issue: false hasContentIssue false

Dielectric Properties of Ultra Dense (3 g/cm3) Silicon Nitride Deposited by Hot Wire CVD at Industrially Relevant High Deposition Rates

Published online by Cambridge University Press:  01 February 2011

Zomer Silvester Houweling
Affiliation:
Z.S.Houweling@phys.uu.nl, Utrecht University, Surfaces, Interfaces and Devices, Van Humboldtstraat 44, Utrecht, 3514 GR, Netherlands, 0031302533161, 0031302543165
Vasco Verlaan
Affiliation:
V.Verlaan@phys.uu.nl, Utrecht University, Surfaces, Interfaces and Devices, Princetonplein 5, PO box 80.000, Utrecht, NL-3508 TA, Netherlands
Karine van der Werf
Affiliation:
C.H.M.vanderWerf@phys.uu.nl, Utrecht University, Surfaces, Interfaces and Devices, Princetonplein 5, PO box 80.000, Utrecht, NL-3508 TA, Netherlands
Hanno D. Goldbach
Affiliation:
H.D.Goldbach@phys.uu.nl, Utrecht University, Surfaces, Interfaces and Devices, Princetonplein 5, PO box 80.000, Utrecht, NL-3508 TA, Netherlands
Ruud E I Schropp
Affiliation:
R.E.I.Schropp@phys.uu.nl, Utrecht University, Surfaces, Interfaces and Devices, Princetonplein 5, PO box 80.000, Utrecht, NL-3508 TA, Netherlands
Get access

Abstract

For silicon nitride (SiNx) deposited at 3 nm/s using hot wire chemical vapor deposition (HWCVD), the mass-density reached an ultra high value of 3.0 g/cm3. Etch rates in a 16BHF solution show that the lowest etch rate occurs for films with a N/Si ratio of 1.2, the ratio where also the maximum in mass density occurs. The thus found etch rate of 7 nm/min is much better than that for PECVD layers, even when made at a much lower deposition rate. The root-mean-square (rms) roughness measured on 300 nm thick SiN1.2 layers is only about 1 nm, which is advantageous for obtaining high field-effect mobility in thin-film transistors. SiN1.2 films have succesfully been tested in “all hot wire” thin film transistors (TFTs). SiNx films with various x values in the range 1.0 < × <1.5 have been incorporated in metal-insulator-semiconductor structures with n-type c-Si wafers to determine their electrical properties from C-V and I-V measurements. We analyzed the behavior of the static dielectric constant, fixed nitride charges and trapped nitride charges as function of N/Si ratio. I-V measurements show that the HW SiNx films with N/Si ≥ 1.33 have high dielectric breakdown fields that exceed 5.9 MV/cm. For these films we deduce a low positive fixed nitride charge density of 6.2-7.8 × 1016 cm-3 from the flat band voltage and from the small hysteresis in the backward sweep we deduce a low fast trapped charge density of 1.3-1.7 × 1011 cm-2. The dielectric constant ε for different compositions is seen not to change appreciably over the whole range and amounts to 6.3 ± 0.1. These high-density SiNx films possess very low tensile stress (down to 16 MPa), which will be helpful in for instance, plastic electronics applications. HWCVD provides high quality a-SiNx materials with good dielectric properties at a high deposition rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Soppe, W., Rieffe, H., and Weeber, A.W.. Prog. Photovolt: res. appl. 13 (2005) 551 Google Scholar
[2] Dekker, H.F.W., Carnel, L., and Beaucarne, G.. Appl.Phys. Lett. 89 (2006) 013508 Google Scholar
[3] Hoex, B.. Erven, A.J.M. van, Bosch, R.V.M., Stals, W.T.M., Bijker, M.D., Oever, P.J. van den, Kessels, W.M.M. and Sanden, M.C.M. van de Prog. Photovolt: res. appl. 13 (2005) 705 Google Scholar
[4] Sobrinho, A. S. da Silva, Czeremuszkin, G., Latre`che, M., and Wertheimer, M. R.. J. Vac. Sci. &Techn. 18,1 (2000) 149157 Google Scholar
[5] Lin, Y., , C, Chen, , Shieh, J., Lee, Y., Pan, C., Chen, C., Peng, J., and Chao, C.. Appl. Phys. Lett. 88(2006) 233511.Google Scholar
[6] Hatzopoulos, A. T., Arpatzanis, N., Tassis, D.H. and Dimitriadis, C.A., Templier, F., and Kamarinos, G.. J. Appl. Phys. 100 (2006) 114311 Google Scholar
[7] Ansari, S.G., Umemoto, H., Morimoto, T., Yoneyame, K., Izumi, A., Masuda, A., Matsumura, H. Thin solid films 501(2006) 31 Google Scholar
[8] Verlaan, V., Houweling, Z.S., Werf, C.H.M. van der, Goldbach, H.D., and Schropp, R. E. I.. MRS Proc. 910 (2006) A3.3.Google Scholar
[9] Schropp, R.E.I.. Jpn. J. Appl. Phys. 45 (2006) 4309 Google Scholar
[10] Verlaan, V., Werf, C.H.M. van der, Arnoldbik, W.M., Goldbach, H.D., Schropp, R.E.I..Phys. Rev. B 73(2006) 195333.Google Scholar
[11] Akasaka, Y., Ext. Abstr. of the 4th Conf. on Hot-Wire CVD Process, Takayama, Jap., (2006)Google Scholar
[12] Verlaan, V., Werf, C.H.M. van der, Houweling, Z.S., Dekkers, H. F. W., Romijn, I. G., Weeber, A. W., Goldbach, H. D., and Schropp, R. E. I.. Prog. In Photovolt. In Press.DOI: 10.1002/pip.760Google Scholar
[13] Claassen, W. A. P., Valkenburg, W. G. J. M., Wijgert, W. M. v. d. and Willemsen, M. F. C., Thin Solid Films 129, 3–4 (1985) 239247 Google Scholar
[14] Masuda, A., Totsuka, M., Oku, T., Hattori, R., a. Vacuum 74 (2004) 525 Google Scholar
[15] Takano, M., Niki, T., Heya, A., Osono, T., Yonezawa, Y., Minamikawa, T., Muroi, S., Minami, S., Masuda, A., Umemoto, H., and Matsumura, H.. Jpn. J. Appl. Phys. 44, 6A (2005) 40984102.Google Scholar
[16] Schropp, R.E.I., Feenstra, K.F., Molenbroek, E.C., Meiling, H., and Rath, J.K., Philos. Mag B 76, (1997),309.Google Scholar
[17] Tolmlin, S.G., J. Phys. D5(1972) 847 Google Scholar
[18] Hishikawa, Y., Nakamura, N. and Kuwano, Y.. Jpn. J. Appl. Phys. 30 (1991) 1008 Google Scholar
[19] Bik, W.M. Arnold and Habraken, F.H.P.M.. Rep. Prog. Phys. 56 (1993) 859 Google Scholar
[20] Gordon, B.J., C-V plotting: Myths and Methods, Sol. State Techn. (1993)Google Scholar
[21] Dubey, P.K., Filikov, V.A. and Simmons, J.G.. Thin Solid Films 33 (1976) 4963 Google Scholar
[22] Sze, S.M., Physics of Semiconductor Devices, Wiley, London, (1969) 425504.Google Scholar
[23] Glang, R., Holmwood, R.A., and Rosenfeld, R. L., Rev. Sci. Instr. 36,7 (1965).Google Scholar
[24] Wehrspohn, R.B., Deane, S.C., French, I.D., Gale, I., Hewett, J., Powell, M. J., and Robertson, J., J. Appl.Phys. 87,144 (2000).Google Scholar
[25] Stannowski, B., Silicon-based thin-film transistors with a high stability, Ph.D. thesis, Universiteit Utrecht, (2002)Google Scholar
[26] Guo, R., Kurata, Y., Inokuma, T., and Hasegawa, S.. J. of non-Cryst.Sol. 351 (2005) 3006 Google Scholar
[27] Han, G.C., Luo, P., Li, K. B., Liu, Z.Y., and Wu, Y.H.. Appl. Phys. A.74 (2002) 243 Google Scholar
[28] Smith, D. L., Alimonda, A. S., Chen, C.-C., Ready, S. E. and Wacker, B.: J. Electrochem. Soc. 137(1990) 614.Google Scholar
[29] Schropp, R.E.I., Nishizaki, S., Houweling, Z.S., Verlaan, V., Werf, C.H.M van der, Matsumura, H..Submitted to solid state electronics. Google Scholar
[30] Muller, R.S. and Kamins, T.I., Device electronics for Integrated Circuits 3rd ed. 145148 Google Scholar
[31] Sazonov, A., Stryahilev, D., Nathan, A., Bogomolova, L. D., J. Non-Cryst. Sol., 299—302 (2002)1360—1364 Google Scholar
[32] Quinn, L.J., Mitchell, S.J.N., Armstrong, B.M., Gamble, H.S., J. Non-Cryst. Sol., 187 (1995) 347352 Google Scholar
[33] Stannowski, B., Rath, J. K. and Schropp, R. E. I., Thin Solid Films 395 (2001) 339342.Google Scholar
[34] al, F. Liu et. J. Appl. Phys. 96,5 (2004) 2973 Google Scholar