Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-19T07:16:08.567Z Has data issue: false hasContentIssue false

Dielectric and Room Temperature Tunable Properties of Mg-Doped Ba 0.96 Ca 0.04 Ti 0.84Zr 0.16 O3 Thin Films on Pt/MgO

Published online by Cambridge University Press:  01 February 2011

T.S. Kalkur
Affiliation:
Microelectronics Research Laboratories, Department of Electrical and Computer Engineering, University of Colorado at Colorado Springs, Colorado Springs, CO 80933-7150.
Woo-Chul Yi
Affiliation:
Microelectronics Research Laboratories, Department of Electrical and Computer Engineering, University of Colorado at Colorado Springs, Colorado Springs, CO 80933-7150.
Elliott Philofsky
Affiliation:
Applied Ceramics Research Company, Colorado Springs, CO 80919.
Lee Kammerdiner
Affiliation:
Applied Ceramics Research Company, Colorado Springs, CO 80919.
Get access

Abstract

Mg- doped Ba0.96 Ca0.04 Ti0.84 Zr0.16 O3 (BCTZ) thin films were fabricated on Pt/MgO substrate by metallorganic decomposition method. The structures of the films were analyzed by x-ray diffraction. The electrical measurements were performed on metal-ferroelectric-metal capacitors with platinum as the top and bottom electrode. The dielectric properties were improved after the capacitors were post annealed at 700 °C in oxygen atmosphere for 30 min. A high dielectric constant of 504 and a dissipation factor of less than 4% was obtained at 1 MHz. The Pt/BCTZ/Pt/MgO capacitors exhibited high tunability of 55% at an applied field of 55 kV/cm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kingon, A. I., Streifer, S. K., Basceri, C., and Sommerfelt, S. R., Mat. Res. Bull., 18, 18 (1995).Google Scholar
2. Caroll, K. R., Pond, J. M., Christey, D. B., Horwitz, J. S. and Leuchner, R. E., Appl. Phys. Lett., 1845, 1845 (1993).Google Scholar
3. Joshi, P. C. and Cole, M. W., Appl. Phys. Lett., 289, 289 (2000).Google Scholar
4. Chen, C.L., Feng, H.H., Zhang, Z., Brazdeikis, A., Huang, Z.J., Chu, W.K., Chu, C.W., Miranda, F.A., Keuls, F.W. Van and Romanofsky, R.R., Appl Phys. Lett, 412, 412 (1999).Google Scholar
5. Im, J., Auciello, O., Baumann, P.K., and Striffer, S.K., Appl. Phys. Lett., 625, 625 (2000).Google Scholar
6. Hoffman, S. and Waser, R.M., Integr. Ferroelectrics, 17, 141 (1997).Google Scholar
7. Hansen, P., Henning, D. and Schreinemacher, H., J. Am. Cearm. Soc. 1369, 1369 (1998).Google Scholar
8. Yi, W. C., Kalkur, T.S., Philofsky, E., and Kammerdiner, L., Appl. Phys. Lett., 3517, 3517 (2001).Google Scholar
9. Powder Diffraction File (International Center for Diffraction Data, Swarthmore, PA, 1995) JCPDS card 36–19.Google Scholar
10. Thomas, R., Dube, D.C., Kamalasanan, M.N., and Chandra, S., Thin Solid Films, 212, 212 (1999).Google Scholar
11. Padmini, P., Taylor, T.R., Lefevre, M.J., Nagra, A.S., York, R.A. and Speck, J.S., Appl. Phys. Lett, 3186, 3186 (1999).Google Scholar
12. Ang, C., Yu, Z., and Cross, L.E., Appl. Phys. Lett, 228, 228 (2000).Google Scholar
13. Schindler, G., Hartner, W., Joshi, V., Solayappn, N., Derbenwick, G. and Nazure, C., Integrated Ferroelectrics, 421, 421 (1997).Google Scholar
14. Narayan, J., Tiwari, P., Jagannadham, K. and Holland, O.W., Appl. Phys.lett., 2093, 2093 (1994).Google Scholar
15. Shimakawa, Y. and Kubo, Y., Appl. Phys. Lett., 77,2590 (2000).Google Scholar
16. Wu, T.B., Wu, C.M., and Chen, M.L., Thin Solid Films, 77, 77 (1998).Google Scholar
17. Shy, H.J. and Wu, T.B., Jpn. J. Appl. Phys. Part 1 4049, 4049 (1998). D. Wu, A. Li, H. Ling, X. Yin, C. Ge, M. Wang and N. Ming, Appl. Surf. Sci., 309, 309 (2000).Google Scholar