Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T19:25:02.879Z Has data issue: false hasContentIssue false

Development of PLZT Film-on-Foil Capacitors with High Dielectric Strength

Published online by Cambridge University Press:  31 January 2011

Beihai Ma
Affiliation:
bma@anl.gov, Argonne National Laboratory, Argonne, Illinois, United States
Manoj Narayanan
Affiliation:
mnarayanan@anl.gov, Argonne National Laboratory, Argonne, Illinois, United States
U. Balachandran
Affiliation:
balu@anl.gov, Argonne National Laboratory, Argonne, Illinois, United States
Get access

Abstract

Ferroelectric film-on-foil capacitors hold special promise to replace discrete passive components in the development of electronic devices that require greater performance and smaller size. We have grown ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films on nickel substrates by chemical solution deposition. The dielectric properties were determined for samples of ≈1.15-μm-thick PLZT film grown on LaNiO3-buffered nickel substrates. Measurements on these samples yielded a dielectric constant of ≈1300, dielectric loss (tan δ) of ≈0.05, and leakage current density of ≈7 × 10-9 A/cm2. An energy density of ≈74 J/cm3 was measured at room temperature with 250-μm-diameter capacitors. Highly accelerated lifetime tests were conducted at 100°C to determine the reliability of the ≈1.15-μm-thick film-on-foil capacitors under field stress conditions (with applied electric field from 8.7 × 105 V/cm to 1.3 × 106 V/cm). The breakdown behavior of the PLZT film-on-foil capacitors was evaluated by Weibull analysis. A voltage acceleration factor of ≈-6.3 was obtained. From the test results, a mean time to failure of >3000 hr was projected for capacitors operated at 100°C with ≈2.6 × 105 V/cm dc electric field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Haertling, G. H. and Land, C. E., J. Am. Ceram. Sci. 54 (1971) 111.Google Scholar
2 Zhu, Y., Zhu, J., Song, Y. J., and Desu, S. B., Appl. Phys. Lett. 73 (1998) 19581960.Google Scholar
3 Uchiyama, K., Kasamatsu, A., Otani, Y., and Shiosaki, T., Jap. J. App. Phys. 46 (2007) L244246.Google Scholar
4 Guttler, B., Bismayer, U., Groves, P., and Salje, E., Semicond. Sci. Technol. 10 (1995) 245248.Google Scholar
5 Ma, B., Kwon, D. K., Narayanan, M., and Balachandran, U., J. Electroceram. 22 (2009) 383389.Google Scholar
6 Ma, B., Kwon, D. K., Narayanan, M., and Balachandran, U., Mater. Lett. 62 (2008) 35733575.Google Scholar
7 Kandasamy, S., Ghantasala, M. K., Holland, A., Li, Y. X., Bliznyuk, V., Wlodarski, W., and Mitchell, A., Mater. Lett. 62 (2008) 370373.Google Scholar
8 Ihlefeld, J., Laughlin, B., A. Hunt-Lowery, Borland, W., Kingon, A., and Maria, J. P., J. Electroceram. 14 (2005) 95102.Google Scholar
9 Kingon, A. I. and Srinivasan, S., Nature Mater. 4 (2005) 233237.Google Scholar
10 Zhao, H.-J., Ren, T.-L., Zhang, N.-X., Zuo, R.-Z., Wang, X.-H., Liu, L.-T., Li, Z.-J., Gui, Z.-L., and Li, L.-T., Mater. Sci. Eng. B99 (2003) 195198.Google Scholar
11 Kong, L. B. and Ma, J., Mater. Lett. 56 (2002) 3037.Google Scholar
12 Seveno, R., Gundel, H. W., and Seifert, S., Appl. Phys. Lett. 79 (2001) 42044206.Google Scholar
13 Polcawich, R.G., Feng, C.-N., Kurtz, S., Perini, S., Moses, P.J., and Trolier-McKinstry, S. Intl. J. Microcircuits Electron. Pack. 23 (2000) 8591.Google Scholar
14 Ma, B., Narayanan, M., and Balachandran, U., Mater. Lett. 63 (2009) 13531356.Google Scholar
15 Narayanan, M., Ma, B., and Balachandran, U., Mater. Lett. 64 (2010) 2224.Google Scholar
16 Balachandran, U., Kwon, D. K., Narayanan, M., and Ma, B., J. Europ. Ceram. Soc., 30 (2010) 365368.Google Scholar
17 Zou, Q., Ruda, H. E., and Yacobi, B. G., Appl. Phys. Lett. 78 (2001) 12821284.Google Scholar
18 Jonscher, K., Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London (1983).Google Scholar
19 Chen, J., He, L., Che, L., and Meng, Z., Thin Solid Films 515 (2006) 23982402.Google Scholar
20 Weibull, W., J. Appl. Mech. 18 (1951) 293297.Google Scholar
21 Dissado, L. A., J. Phys. D: Appl. Phys. 23 (1990) 15821591.Google Scholar
22See, for example, Smith, D. J., Reliability, Maintainability and Risk: Practical Methods for Engineers, Newnes (2001).Google Scholar
23 Munikoti, R. and Dhar, P., IEEE Trans. on Components, Hybrids, and Manufacturing Technology 11 (1988) 342345.Google Scholar