Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-20T07:23:33.329Z Has data issue: false hasContentIssue false

Development of New Polymer Systems and Quantum Dots - Polymer Nanocomposites for Low-cost, Flexible OLED Display Applications

Published online by Cambridge University Press:  23 June 2011

Lihua Zhao*
Affiliation:
Hewlett-Packard Labs, Hewlett-Packard Company, 1501 Page Mill Rd, Palo Alto, CA, 94304, U.S.A.
Zhang-Lin Zhou
Affiliation:
Hewlett-Packard Labs, Hewlett-Packard Company, 1501 Page Mill Rd, Palo Alto, CA, 94304, U.S.A.
Zengshan Guo
Affiliation:
The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Jian Pei
Affiliation:
The Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Samuel Mao
Affiliation:
Lawrence Berkeley National Laboratory and Department of Mechanical Engineering, University of California, Berkeley, Mail Code 1740, Berkeley, CA, 94720, U.S.A.
Get access

Abstract

Recently, tremendous progress has been made toward application of organic (small molecule/polymer) light-emitting diodes (OLEDs) in full color flat panel displays and other devices. However, with current technologies, OLEDs are still struggling with high manufacturing costs which really limit the size of OLEDs panels and with life time, especially differential aging of colors. To be more cost-effective for fabricating OLEDs, we believe solution-processing would be an attractive path due to its simplicity and highly reduced equipment costs. This proceeding paper discusses our recent progress in development of new polymer systems that are highly solvent-resistant but maintaining their photophysical properties and hybrid quantum-dots (QDs)-polymer nanocomposites for their use in multicolor and multilayer OLEDs pixels through solution-processing. Our new polymer systems are named conductive semi-interpenetrating polymer networks (C-Semi-IPNs) served in different layers of OLEDs devices, containing an inert polymer network and conducting polymer(s) including hole transport and emissive materials. Since these do not require complicated chemical modification or introduction of reactive moieties to OLED materials, many state-of-the-arts emissive polymers can be utilized to achieve RGB and white OLEDs. The research findings on hybrid QDoligomer nanocomposite as a good analogue lead to the successful design and synthesis of QDpolymer nanocomposites which were used to build proof-of-the-concept devices showing a good promise in providing excellent color purity and stability as well as device robustness.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thin Film Devices and Methods for Forming the Same. US Patent 7541227.Google Scholar
2. Müllen, Klaus, Scherf, Ullrich, Organic Light Emitting Devices: Synthesis, Properties and Applications, Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim, 2006, pg. 151.Google Scholar
3. Herbner, T. R., Wu, C. C., Marcy, D., Lu, M. H., Strum, J. C., Applied Physics Letter, 72, 519 (1998).Google Scholar
4. Gustafsson, G., Gao, Y., Treacy, G. M., Klavetter, F., Colaneri, N., Heeger, A. J., Nature, 357, 477, (1992).Google Scholar
5. Forrest, S. R., Nature, 428, 911, (2004).Google Scholar
6. Kiebooms, R., Menon, R., and Lee, K., Handbook of Advanced Electronic and Photonic Materials and Devices, edited by Nalwa, H. S. Academic, San Diego, 2001, Vol. 8, pg. 1.Google Scholar
7. Zhou, Z. L., Sheng, X., Nauka, K., Zhao, L., Gibson, G., Lam, S., Yang, C., Brug, J., and Elder, R., Applied Physics Letter, 96, 013504, (2010) and references therein.Google Scholar
8. Zhou, Z. L., Sheng, X., Zhao, L., Gibson, G., Lam, S., Nauka, K., J. Brug MRS Symposium B Proceedings Paper, 1154, 1154–B10-108, (2009) and references therein.Google Scholar
9. Colvin, V. L., Schlamp, M. C., Alivisatos, A. P., Nature, 370, 354, (1994). (b) B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, M. F. Rubner, Appl. Phys. Lett., 66, 1316, (1995). (c) T.-W. F. Chang, S. Musikhin, L. Bakueva, L. Levina, M. A. Hines, P. W. Cyr, E. H. Sargent, Appl. Phys. Lett. 84, 4295, (2004).Google Scholar
10. Huynh, W. U., Dittmer, J. J., Alivisatos, A. P., Science, 295, 2425 (2002). (b) S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, Nat. Mater., 4, 138, (2005). (c) J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, J. M. Frechet, J. Am. Chem. Soc., 126, 6550 (2004).Google Scholar
11. Guo, Z., Zhao, L., Pei, J., Zhou, Z. L., Gibson, G., Lam, S., Brug, J., S. S. Mao Macromolecules, 43(4), 18601866 (2010) and references therein.Google Scholar
12. Peet, J., Brocker, E., Xu, Y., Bazan, G. C., Advanced Materials, 20, 1882, (2008).10.1002/adma.200702515Google Scholar
13. Ariu, M., Sima, M., Rahn, M. D., Hill, J., Fox, A. M., Lidzey, D. G., Oda, M., Cabanillas- Gonzalez, J., Bradley, D. D. C., Physics Review. B, 67, 195333 (2003).Google Scholar
14. Lu, H. H., Liu, C. Y., Chang, C. H., Chen, S. A., Advanced Materials, 19, 2574 (2007).Google Scholar
15. Guo, Z., Pei, J., Zhou, Z. L., Zhao, L., Gibson, G., Lam, S., and J.Brug Polymer , 50(20), 47944800(2009).10.1016/j.polymer.2009.08.028Google Scholar
16. Guo, Z., Liu, D., Wang, C., Pei, J., Zhou, Z. L., Zhao, L., Gibson, G., Brug, J., Lam, S., S. Mao Science China Chemistry, 54(4), 678684 (2011).Google Scholar