Skip to main content Accessibility help
×
Home

Development of New Materials by Ionized-Cluster Beam Technique

  • T. Takagi (a1)

Abstract

In the Ionized-Cluster Beam (ICB) technique, deposition by macroaggregates consisting of 500 to 2000 atoms loosely coupled together involves low ratios of charge to mass. Consequently, high mass density beams at low equivalent energy per atom in an optimum range for film formation can be transported without problems due to space charge repulsion forces and deposition onto insulating substrates is easily possible due to low accumulation of ion charge. The presence of ionic charge has great influence upon film formation mechanisms in spite of low content of ions in the total flux. Also, because of the kinetics of cluster breakup upon impact, enhancement of migration of adatoms upon a substrate surface can be achieved by increasing the acceleration voltage. It is possible to control the mechanical, crystallographic, optical and magnetic properties of films over three dimensions by variation of acceleration voltage or ion content in the total flux. Films of many materials have been formed at low temperatures with well-controlled characteristics. Among examples of interest are included metal and semiconductor material films for functional devices and VLSI applications, intermetallic compound films for magnetic or thermoelectric uses and organic material films. Results suggest that ICB offers exceptional potential for applications involving formation of new materials.

Copyright

References

Hide All
1. Takagi, T., Yamada, I., Kunori, M., and Kobiyama, S., proc. 2nd Int. Conf. Ion Sources, 1972, Vienna (Ostereichiche Studiengesellshaft fur Atomonergie, Vienna, 1982), p.790.
2. Takagi, T., Yamada, I. and Sasaki, A., Thin Solid Films 45, 569 (1977).
3. Borel, J.-P and Buttel, J. (ed.), “Small Particles and Inorganic Clusters”, Suf. Sci. 106 (1981).
4. Lee, J.K., Barker, J.A., and Abraham, F.F., J. Chem. Phys. 58, 3166 (1973).
5. Yokozeki, A. and Stein, G.D., J. Appl. Phys., 49,2224 (1978).
6. Hill, P.G., Witting, H., and Demetri, E.P., Trans. Am. Soc. Mech. Eng. 85, 303 (1963).
7. Yamada, I., in Takagi, T. (eD.), Proc. Int. Ion Eng. Congr. -ISAT'83 & IPAT83-, 1983., Kyoto (IEEJ, Tokyo, 1983), p. 1117.
8. Wagener, P.P., Clumpuer, J.A. and Wu, B.J.C., Phys. Fluids 15, 1869 (1972).
9. Stein, G.D., Phys.s Teach. 503 (1979).
10. Usui, H., Takaoka, H., Yamada, I., and Takagi, T., Proc. 4th Symp. Ion sources Ion-Assisted Technology, 1981, Tokyo (IEEJ, Tokyo, 1981), p175.
11. Yamada, I. and Takagi, T., Thin Solid Films 80, 105 (1981).
12. Yamada, I., Stein, G.D., Usui, H., and Takagi, T., Proc. 6th Symp. Ion Sources Ion-Assisted Technology, 1982, Tokyo (IEEJ, 1982), p.47.
13. Anderson, A.B.. J. Chem Phys. 64, 4046 (1976).
14. Buttet, J. and Borel, J.-P., Phys. Rev. A 13, 2287 (1976).
15. Takagi, T., Yamada, I. and Sasaki, A., Inst. Phys. Conf. Ser. 38, 142 (1978).
16. Bottiglioui, F., Coutant, J. and Fois, M., Phys. Rev. A 6, 1830 (1972).
17. Technical Data, Eaton Corporation, 133 Brimbal Avenue, Beverly, MA U.S.A.
18. Takagi, T., Yamada, I. and Takaoka, H., Surface Science 106, 544 (1981).22.
19. Yamada, I., Takaoka, H., Inokawa, H., Usui, H., Cheng, S.C. and Takagi, T., Thin Solid Films 92, (1982).
20. Takagi, T., Yamada, I. and Sasaki, A., J. Vac. Sci. Techno. 12, 1128 (1972).
21. Takagi, T., Yamada, I. and Sasaki, A., Thin Solid Films 39, 207 (1976).
22. Yamada, I., Saris, F.W., Takagi, T., Matsubara, K., Takaoka, H. and Ishiyama, S., Jap. J. Appl. Phys. 19, L181 (1980).
23. Takagi, T., Preprint of Ion Assisted Surface Treatments, Techniques and Processed, 1982, Coventry (The Metal Society, London, 1982), p.1.1.
24. Yamada, I., Nagai, I., Horie, M. and Takagi, T., J. Appl. Phys. 54, 1583 (1983).
25. Takagi, T., Yamada, I. and Matsubara, K., Thin Solid Films, 58, 9 (1970).
26. Takagi, T., Matsubara, K. and Takaoka, H., J. Appl. Phys. 51, 5419 (1980).
27. Matsubara, K., Horibe, T., Takaoka, H. and Takagi, T., Proc. 4th Symp. Ion Sources Ion Applic. Technology, 1980, Tokyo (IEEJ, Tokyo, 1980), p137.
28. Mameno, K., Matsubara, K. and Takagi, T., Proc. 6th Symp. Ion Sources Ion-Assisted Technology 1982, Tokyo (IEEJ, Tokyo, 1982), p.341.
29. Inokawa, H.,Fukushima, K., Yamada, I. and Takagi, T., Proc. 6th Symp. Ion Sources Ion-Assisted Technology, 1982, Tokyo (IEEJ, Tokyo, 335 1982), p.355.
30. Koyanagi, T., Matsubara, K., Takaoka, H. and Takagi, T., Proc. 6th Symp. Ion Sources Ion-Assisted Technology, 1982, Tokyo (IEEJ, Tokyo, 1982), p.409.
31. Takagi, T., Matsubara, K., Oura, M. and Koyanagi, T., Proc. 6th Symp. Ion Sources Ion-Assisted Technology, 1982, Tokyo (IEEJ, Tokyo, 1982), p.371.
32. Takaoka, H., Matsubara, K. and Takagi, T., in Takagi, T. (eD.), Proc. Int. Ion Eng. Congr. -ISAT'83 & IPAT'83-, 1983, Kyoto (IEEJ, Tokyo, 1982), p. 1241.
33. Usui, H., Naemura, N., Yamada, I. and Takagi, T., Proc. 6th Symp. Ion Sources and Ion-Assisted Technology, 1982, Tokyo (IEEJ, Tokyo, 1982), p.331.
34. Usui, H., Yamada, I. and Takagi, T., in Takagi, T. (eD.), Proc. Int. lonEng. Congr. -ISAT'83 & IPAT'83-, 1983, Kyoto (IEEJ, Tokyo, 1983), p.1427.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed