Skip to main content Accessibility help
×
Home

Development of high k/III-V (InGaAs, InAs, InSb) structures for future low power, high speed device applications

  • Edward Yi Chang (a1) (a2), Hai-Dang Trinh (a1), Yueh-Chin Lin (a1), Hiroshi Iwai (a3) and Yen-Ku Lin (a1)...

Abstract

III-V compounds such as InGaAs, InAs, InSb have great potential for future low power high speed devices (such as MOSFETs, QWFETs, TFETs and NWFETs) application due to their high carrier mobility and drift velocity. The development of good quality high k gate oxide as well as high k/III-V interfaces is prerequisite to realize high performance working devices. Besides, the downscaling of the gate oxide into sub-nanometer while maintaining appropriate low gate leakage current is also needed. The lack of high quality III-V native oxides has obstructed the development of implementing III-V based devices on Si template. In this presentation, we will discuss our efforts to improve high k/III-V interfaces as well as high k oxide quality by using chemical cleaning methods including chemical solutions, precursors and high temperature gas treatments. The electrical properties of high k/InSb, InGaAs, InSb structures and their dependence on the thermal processes are also discussed. Finally, we will present the downscaling of the gate oxide into sub-nanometer scale while maintaining low leakage current and a good high k/III-V interface quality.

Copyright

Corresponding author

*) Email: edc@mail.nctu.edu.

References

Hide All
1. Kim, H.-S., Ok, I., Zhang, M., Zhu, F., Park, S., Yum, J., Zhao, H., Lee, J. C., Majhi, P., Goel, N., Tsai, W., Gaspe, C. K., and Santos, M. B., Appl. Phys.Lett. 93, 062111 (2008).
2. Ko, H., Takei, K., Kapadia, R., Chuang, S., Fang, H., Leu, P. W., Ganapathi, K., Plis, E., Kim, H. S., Chen, S. Y., Madsen, M., Ford, A. C., Chueh, Y. L., Krishna, S., Salahuddin, S., and Javey, A., Nature 468, 286 (2010).
3. Milojevic, M., Hinkle, C. L., Aguirre-Tostado, F. S., Kim, H. C., Vogel, E. M., Kim, J., and Wallace, R. M., Appl. Phys.Lett. 93, 252905 (2008).
4. Trinh, H. D., Chang, E. Y., Wu, P. W., Wong, Y. Y., Chang, C. T., Hsieh, Y. F., Yu, C. C., Nguyen, H. Q., Lin, Y. C., Lin, K. L., and Hudait, M. K., Appl.Phys.Lett. 97, 042903 (2010).
5. O'Connor, E., Monaghan, S., Long, R. D., O’Mahony, A., Povey, I. M., Cherkaoui, K., Pemble, M. E., Brammertz, G., Heyns, M., Newcomb, S. B., Afanas’ev, V. V., and Hurley, P. K., Appl. Phys. Lett. 94, 102902 (2009).
6. O'Connor, E., Long, R. D., Cherkaoui, K., Thomas, K. K., Chalvet, F., Povey, I. M., Pemble, M. E., Hurley, P. K., Brennan, B., Hughes, G. and Newcomb, S. B., Appl. Phys. Lett. 92, 022902, (2008).
7. Chang, Y. C., Huang, M. L., Lee, K. Y., Lee, Y. J., Lin, T. D., Hong, M., Kwo, J., Lay, T. S., Liao, C. C., and Cheng, K. Y., Appl.Phys. Lett. 92, 072901 (2008).
8. Goel, N., Majhi, P., Tsai, W., Warusawithana, M., Schlom, D. G., Santos, M. B., Harris, J. S. and Nishi, Y., Appl. Phys. Lett. 91, 093509 (2007).
9. Hwang, Y., Wistey, M. A., Cagnon, J., Engel-Herbert, R., and Stemmer, S., Appl. Phys.Lett. 94, 122907 (2009).
10. Brammertz, G., Lin, H.-C., Caymax, M., Meuris, M., Heyns, M., and Passlack, M., Appl.Phys. Lett. 95, 202109 (2009).
11. Schroder, D. K., Semiconductor Material and Device Characterizatic, (John Wiley and Sons, Inc., 2006) pp. 321323.
12. Wheeler, D., Wernersson, L.-E., Fröberg, L., Thelander, C., Mikkelsen, A., Weststrate, K.-J., Sonnet, A., Vogel, E.M., Seabaugh, A., Microelectron. Eng. 86, 15611563 (2009).
13. Suzuki, R., Taoka, N., Yokoyama, M., Lee, S., Kim, S. H., Hoshii, T., Yasuda, T., Jevasuwan, W., Maeda, T., Ichikawa, O., Fukuhara, N., Hata, M., Takenaka, M., and Takagi, S., Appl. Phys. Lett. 100, 132906 (2012).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed