Skip to main content Accessibility help
×
Home

Development of HgCdTe for LWIR Imagers

  • Joseph L. Schmit (a1)

Abstract

This paper provides a historical perspective on the emergency of HgCdTe as the material of choice for long wavelength infrared (LWIR) imagers. The need for devices which see room temperature objects through the atmospheric window actually drove the development of this material. The lack of elemental or compound semiconductors having the desired wavelength response forced the choice of the alloy semiconductor, HgCdTe. The development of this material in several countries and companies beginning in the late 1950's is traced. The crystal growth methods used to grow HgCdTe have included melt growth techniques such as Bridgman, zone-melting, quench-anneal and slushgrowth. The solution growth techniques include growth from HgTe-rich, Te-rich and Hg-rich solutions. Vapor phase growth has included evaporation, sputtering, molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD). No perfect method has yet been developed, but several have provided material for the large area arrays needed for modern imagers.

Copyright

References

Hide All
Kruse, P.W., Semiconductors and Semimetals, 18, Edited by Willardson, and Beer, , (Academic Press, New York, 1981) p. 15.
2. Kruse, P.W., McGlauchlin, L.D. and McQuistan, R.B., Elements of IR Technology (Wiley, London, 1962) p. 164.
3. Schmit, J.L., Crystal Growth of Electronic Materials, edited by E., Kaldis (Elsevier Sci. Publishers, 1985) chapter 20, p. 281.
4. Lawson, W.D., Nielsen, S., Putley, E.H. and Young, A.S., J. Phys. Chem. Solids 9, 325 (1959).
5. Harman, T.C., Strauss, A.J., Dickey, D.H., Dresselhaus, M.S., Wright, G.B. and Mavroides, J.G., Phys. Rev. Lett. 7, 403 (1961).
6. Kruse, P.W., Blue, M.D., Garfunkel, J.H., and Saur, W.D., Infrared Phys. 2, 53 (1962).
7. Woolley, J.C. and Ray, B., J. Phys. Chem Solids 13, 151 (1960).
8. Bailly, F., Cohen-Solal, G. and Marfaing, Y., C.R. Acad. Sci. Paris 257, 103 (1963).
9. Galazka, R.R., Acta Phys. Polon. 24, 791 (1963).
10. Kolomiets, B.T. and Mal'kova, A.A., Fiz. Tverd. Tele 5, 1219 [English transl.]: Sov. Phys. Solid State 5, 889 (1963).
11. Harman, T.C., Physics and Chemistry of II–VI Compounds, edited by N., Aven and J.S., Prener, (Wiley, New York, 1967) P. 784
12. Parker, S.G. and Kraus, K., U.S. Patent 3 468 363 (1969).
13. Bartlett, B.E., Capper, P., Harris, J.E. and Quelch, M.J.T., J. Crystal Growth 46, 623 (1979).
14. Kruse, P.W. and Schmit, J.L., U.S. Patent 3 723 190 (1973). Filed October 9, 1968; held under secrecy order until 1973.
15. Harman, T.C., J. Electron. Mater. 1, 230 (1972).
16. Speerschneider, C.J., unpublished work.
17. Nelson, D.A., Higgins, W.M., Lancaster, R.A., Murosako, R.P. and Roy, R.G., Proc. IRIS, Vol.29, p. 389398 (1984), unclassified.
18. Kalisher, M.H., J. Crystal Growth 70, 365 (1984).
19. Schmit, J.L., Hager, R.J. and Wood, R.A., J. Crystal Growth 56, 485 (1982).
20. Shin, S.H., Chu, M., Vanderwyck, A.H.B., Lanir, M. and Wang, C.C., J. Appl. Phys. 51, 3772 (1980).
21. Tufte, O.N. and Stelzer, E.L., J. Appl. Phys. 40, 4559 (1969).
22. Faurie, J.P. and Million, A., Appl. Phys. Letters 41, 264 (1982).
23. Irvine, S.J.C. and Mullin, J.B., J. Crystal Growth 55, 107 (1981).
24. Hyliands, N.J., Thompson, J., Bevan, N.J., Woodhouse, K.T. and Vincent, V., J. Vac. Sci. Technol. A(4), 2217 (1986).
25. Schmit, J.L., J. Crystal Growth 65, 249 (1983).

Development of HgCdTe for LWIR Imagers

  • Joseph L. Schmit (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed