Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T00:21:43.812Z Has data issue: false hasContentIssue false

Developing Monolithically Integrated CdTe Devices Deposited by AP-MOCVD

Published online by Cambridge University Press:  28 August 2013

S.L. Rugen-Hankey*
Affiliation:
Centre for Solar Energy Research, Glyndwr University, OpTIC Technium, St Asaph, North Wales, UK
V. Barrioz
Affiliation:
Centre for Solar Energy Research, Glyndwr University, OpTIC Technium, St Asaph, North Wales, UK
A. J. Clayton
Affiliation:
Centre for Solar Energy Research, Glyndwr University, OpTIC Technium, St Asaph, North Wales, UK
G. Kartopu
Affiliation:
Centre for Solar Energy Research, Glyndwr University, OpTIC Technium, St Asaph, North Wales, UK
S.J.C. Irvine
Affiliation:
Centre for Solar Energy Research, Glyndwr University, OpTIC Technium, St Asaph, North Wales, UK
C. White
Affiliation:
OpTek Systems, Unit 14 Blacklands Way, Abingdon Business Park, Abingdon, Oxford, OX14 1DY
G. Rutterford
Affiliation:
OpTek Systems, Unit 14 Blacklands Way, Abingdon Business Park, Abingdon, Oxford, OX14 1DY
G. Foster-Turner
Affiliation:
OpTek Systems, Unit 14 Blacklands Way, Abingdon Business Park, Abingdon, Oxford, OX14 1DY
*
Get access

Abstract

Thin film deposition process and integrated scribing technologies are key to forming large area Cadmium Telluride (CdTe) modules. In this paper, baseline Cd1-xZnxS/CdTe solar cells were deposited by atmospheric-pressure metal organic chemical vapor deposition (AP-MOCVD) onto commercially available ITO coated boro-aluminosilicate glass substrates. Thermally evaporated gold contacts were compared with a screen printed stack of carbon/silver back contacts in order to move towards large area modules. P2 laser scribing parameters have been reported along with a comparison of mechanical and laser scribing process for the scribe lines, using a UV Nd:YAG laser at 355 nm and 532 nm fiber laser.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bosio, A., Menossi, D., Mazzamuto, S., Romeo, N., Thin Solid Films 519 (2011) 75227525.CrossRefGoogle Scholar
Clayton, A. J., Rugen-Hankey, S. L., Brooks, W. S. M., Kartopu, G., Barrioz, V., Lamb, D. A., Hodgson, S. D. & Irvine, S. J. C., Proceedings of the PVSAT-8 Conference, April 2012, Northumbria University Google Scholar
Jingquan, Z., Lianghuan, F., Zhi, L., Yaping, C., Wei, L., Lili, W., Bing, L., Wei, C., Jiagui, Z., Sol. Energ. Mat. Sol. C., 93 (2009) 966969 CrossRefGoogle Scholar
Westin, P., Wätjen, J. T, Zimmermann, U., Edoff, M., Sol. Energ. Mat. Sol. C., 98 (2012) 172178 CrossRefGoogle Scholar
Perrenoud, J., Schaffner, B., Buecheler, S., Tiwari, A.N., Sol. Energ. Mat. Sol. C., 95 (2011) S8S12.CrossRefGoogle Scholar
Irvine, S. J. C., Barrioz, V., Lamb, D., Jones, E. W. and Rowlands-Jones, R. L., J. Cryst. Growth, 310 (2008) 5198.CrossRefGoogle Scholar
Rowlands, R.L., Irvine, S.J.C., Barrioz, V., Jones, E.W. and Lamb, D.A., Semicond. Sci. Technol., 23 (2008) 15017 CrossRefGoogle Scholar
Aramoto, T., Adurodija, F., Nishiyama, Y., Arita, T., Hanafusa, A., Omura, K., Morita, A., Sol. Energ. Mat. Sol. C., 75 (2003) 211217 CrossRefGoogle Scholar
Cruz, L.R., Pinheiro, W.A., Medeiro, R.A., Ferreira, C.L., Duenow, J.N., Vacuum, 87 (2013) 4549 CrossRefGoogle Scholar