Skip to main content Accessibility help
×
Home

Developing a New Material for MEMS: Amorphous Diamond

  • J. P. Sullivan (a1), T. A. Friedmann (a1), M. P. de Boer (a1), D. A. LaVan (a2), R. J. Hohlfelder (a1), C. I. H. Ashby (a1), M. T. Dugger (a1), M. Mitchell (a1), R. G. Dunn (a1) and A. J. Magerkurth (a3)...

Abstract

Amorphous diamond is a new material for surface-micromachined microelectromechanical systems (MEMS) that offers promise for reducing wear and stiction of MEMS components. The material is an amorphous mixture of 4-fold and 3-fold coordinated carbon with mechanical properties close to that of crystalline diamond. A unique form of structural relaxation permits the residual stress in the material to be reduced from an as-deposited value of 8 GPa compressive down to zero stress or even to slightly tensile values. Irreversible plastic deformation, achieved by heat treating elastically strained structures, is also possible in this material. Several types of amorphous diamond MEMS devices have been fabricated, including electrostatically-actuated comb drives, micro-tensile test structures, and cantilever beams. Measurements using these structures indicate the material has an elastic modulus close to 800 GPa, fracture toughness of 8 MPa.m½, an advancing H2O contact angle of 84° to 94°, and a surface roughness of 0.1 to 0.9 nm R.M.S. on Si and SiO2, respectively.

Copyright

References

Hide All
1. Gardos, M. N., in Tribology Issues and Opportunities in MEMS, edited by Bhushan, B. (Kluwer Academic Publishers, Netherlands, 1998) p. 341.
2. Maboudian, R. and Howe, R. T., J. Vac. Sci. Technol. B15, 1 (1997).
3. Björkman, H., Rangsten, P., and Hjort, K., Sensors and Actuators 78, 41 (1999).
4. Björkman, H., Rangsten, P., Hollman, P., and Hjort, K., Sensors and Actuators 73, 24 (1999).
5. Kohn, E., Gluche, P., and Adamschik, M., Diamond Relat. Mater. 8, 934 (1999).
6. Ertl, S., Adamschik, M., Schmid, P., Gluche, P., Flöter, A., and Kohn, E., Diamond Relat. Mater. 9, 970 (2000).
7. Shibata, T., Kitamoto, Y., Unno, K., and Makino, E., J. Microelectromech. Systems 9, 47 (2000).
8. Mao, M. Y., Wang, T. P., Xie, J. F., and Wang, W. Y., Proc. IEEE Micro Electro Mechanical Systems 1995, Amsterdam, Netherlands, p. 392.
9. Aslam, M. and Schulz, D., Transducers '95 and Eurosensors IX, Stockholm, Sweden, June 2529, 1995.
10. Hunn, J. D., Withrow, S. P., White, C. W., Clausing, R. E., and Heatherly, L., Appl. Phys. Lett. 65, 3072 (1994).
11. Niedermann, Ph., Hänni, W., Blanc, N., Christoph, R., and Burger, J., J. Vac. Sci. Technol. A14, 1233 (1996).
12. Ramesham, R., Thin Solid Films 340, 1 (1999).
13. Auciello, O., Krauss, A. R., Gruen, D. M., Busman, H. G., Meyer, E. M., Tucek, J., Sumant, A., Jayatissa, A., Moldovan, N., Mancini, D. C., and Gardos, M. N., in Materials Science of Microelectromechanical Systems (MEMS) Devices II, edited by Boer, M. P. de, Heuer, A. H., Jacobs, S. J., and Peeters, E. (Mater. Res. Soc. Symp. Proc. 605, Warrendale, PA, 2000) p. 73.
14. Friedmann, T. A. and Sullivan, J. P., Method of Forming a Stress Relieved Amorphous Tetrahedrally-Coordinated Carbon Film, U.S. patent no. 6,103,305 (Aug. 15, 2000).
15. Marks, N. A., McKenzie, D. R., Pailthorpe, B. A., Bernasconi, M., and Parrinello, M., Phys. Rev. Lett. 76 768 (1996); P. A. Schultz, K. Leung, and E. B. Stechel, Phys. Rev. B 59, 733 (1999).
16. Friedmann, T. A., Sullivan, J. P., Knapp, J. A., Tallant, D. R., Follstaedt, D. M., Medlin, D. L., and Mirkarimi, P. B., Appl. Phys. Lett. 71, 3820 (1997).
17. Sullivan, J. P., Friedmann, T. A., and Baca, A. G., J. Electron. Mater. 26, 1021 (1997).
18. Friedmann, T. A., McCarty, K. F., Barbour, J. C., Siegal, M. P., and Dibble, D. C., Appl. Phys. Lett. 68, 1643 (1995).
19. Sullivan, J. P., Friedmann, T. A., Dunn, R. G., Stechel, E. B., Schultz, P. A., Siegal, M. P., and Missert, N., in Covalently Bonded Disordered Thin Film Materials, edited by Siegal, M. P., Milne, W. I., and Jaskie, J. E. (Mater. Res. Soc. Symp. Proc. 498, Warrendale, PA 1998) p. 97.
20. LaVan, D. A., Hohlfelder, R. J., Sullivan, J. P., Friedmann, T. A., Mitchell, M., and Ashby, C. I. H., in Amorphous and Nanostructured Carbon, edited by Sullivan, J. P., Robertson, J., Zhou, O., Allen, T. B., and Coll, B. F. (Mater. Res. Soc. Symp. Proc. 593, Warrendale, PA, 2000) p. 465.
21. Friedmann, T. A., Sullivan, J. P., LaVan, D. A., Buchheit, T. E., Knapp, J. A., Hohlfelder, R. J., and Mitchell, M., presented in Symposium W: The Limits of Strength in Theory and Practice (2000 Fall Meeting of the Mater. Res. Soc., Boston, MA, Nov. 27 - Dec. 1, 2000).
22. Weiss, P., Science News 158, 56 (2000).
23. Dugger, M. T., Senft, D. C. and Nelson, G. C. in Microstructure and Tribology of Polymer Surfaces, edited by Tsukruk, V.V. and Wahl, K.J. (American Chemical Society, Washington, DC, 1999), p. 455.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed