Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T15:04:19.584Z Has data issue: false hasContentIssue false

Determination of the Threshold Energy of Noble Gas Defects in Silicon Created by Ion Beam Etching

Published online by Cambridge University Press:  25 February 2011

W. D. Sawyer
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 7000 Stuttgart 80, Federal Republic of Germany
J. Weber
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 7000 Stuttgart 80, Federal Republic of Germany
Get access

Abstract

Using photoluminescence we investigate defects introduced into silicon by ion beam etching. The luminescence spectra show the presence of various defects known from radiation damage studies. Ion-beam milling with different noble gas ions produces a family of defects which gives rise to almost identical photoluminescence spectra. The intensity of the Ar noble gas defect luminescence is studied for different ion-beam energies (200–2000eV) and crystal orientations. The threshold energy to create this defect leads to a model of the defect structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pang, S.W., Rathman, D.D., Silversmith, D.J., Mountain, R.W., and DeGraff, P.D., J. Appl. Phys. 54, 3272 (1983).CrossRefGoogle Scholar
2 Fonash, S.J., Solid StateTech, 28, 150 (1985).Google Scholar
3 Fonash, S.J., Solid State Tech,28 201 (1985).Google Scholar
4 Davis, R.J., Singh, R., Fonas, S.J., Caplan, P.J., Poindexter, E.H., In Materials Research Society Symposia Proceedings, Vol.25, Thin Films and Interfaces II, ed. by Baglin, J.E.E., Cambell, D.R., and Chu, W.K. (Elsevier New York 1984) p. 607.Google Scholar
5 Davis, R.J., Habermeier, H.-U., and Weber, J., Appl. Phys. Lett. 47, 1295 (1985).Google Scholar
6 Weber, J., Davis, R.J., Habermeier, H.-U., Sawyer, W.D., and Singh, M., Appl. Phys. A 41, 175 (1986).Google Scholar
7 Ringel, S.A., Mu, X.C., Fonash, S.J., and Ashok, S., J. Vac. Sci. Tech. A 4, 2385 (1986).CrossRefGoogle Scholar
8 Bean, J.C., Becker, G.E., Petroff, P.M., and Seidel, T.E., J. Appl. Phys. 48, 907 (1977).Google Scholar
9 Bürger, N., Thonke, K., Sauer, R., and Pensl, G., Phys. Rev. Lett. 52, 1645 (1984).CrossRefGoogle Scholar
10 Kirkpatrick, C.G., Noonan, J.R., and Streetman, B.G., Radiat. Eff. 30, 97 (1976).Google Scholar
11 Tkachev, V.D., Mudryi, A.V., Minaev, N.S., Phys. Status Solidi (a) 81, 313 (1984).Google Scholar
12 Minaev, N.S., Mudryi, A.V., and Tkachev, V.D., Phys. Status Solidi (b) 108, K89 (1981).CrossRefGoogle Scholar
13 Lee, Y.H. and Corbett, J.W., Phys. Rev. B8, 2810 (1973).Google Scholar
14 Lee, Y.H. and Corbett, J.W., Phys. Rev. B9, 4351 (1974).CrossRefGoogle Scholar
15 Bguerlein, R., Zeitschrift für Physik 176, 498 (1963).CrossRefGoogle Scholar
16 Lindhard, J., Scharff, M., and Schioft-, H., Dan., K. Vidensk. Selsk. Mat. - Fys. Medd. 34, 1 (1965).Google Scholar
17 Watkins, G.D., in The International Conference on Lattice Defects in Semiconductors, Freiburg, 1974, edited by F.A. Huntley (Institute of Physics, London, 1975) p. 1.Google Scholar
18 Corbett, J.W. and Watkins, G.D., Phys. Rev. 138, 543 (1965).Google Scholar