Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T17:16:18.384Z Has data issue: false hasContentIssue false

Determination of the Nitrogen Acceptor Ionization Energy in Zinc Oxide by Photoluminescence Spectroscopy

Published online by Cambridge University Press:  01 February 2011

Lijun Wang
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506–6315
N. Y. Garces
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506–6315
L. E. Halliburton
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506–6315
N. C. Giles
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506–6315
Get access

Abstract

Photoluminescence (PL) experiments performed on bulk ZnO crystals are used to establish the ionization energy of the substitutional nitrogen acceptor. The temperature dependence of the nitrogen-related electron-acceptor (e,A°) emission band has been monitored in as-grown single crystals. A lineshape analysis of this band is used to determine the acceptor ionization energy. The temperature variation of the ZnO band gap was included in our analysis and the low-temperature acceptor ionization energy for substitutional nitrogen at an oxygen site in ZnO was found to be EA = 209 ± 3 meV. Electron paramagnetic resonance and Hall-effect measurements were also used to characterize these bulk ZnO samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Minegishi, K., Koiwai, Y., Kikuchi, Y., Yano, K., Kasuga, M., and Shimizu, A., Jpn. J. Appl. Phys. 36, L1453 (1997).Google Scholar
2. Joseph, M., Tabata, H., and Kawai, T., Jpn. J. Appl. Phys. 38, L1205 (1999).Google Scholar
3. Look, D. C., Reynolds, D. C., Litton, C. W., Jones, R. L., Eason, D. B., and Cantwell, G., Appl. Phys. Lett. 81, 1830 (2002).Google Scholar
4. Zeuner, A., Alves, H., Hofmann, D. M., Meyer, B. K., Hoffmann, A., Haboeck, U., Strassburg, M., and Dworzak, M., Phys. Stat. Sol. (b) 234, R7 (2002).Google Scholar
5. Tamura, K., Makino, T., Tsukazaki, A., Sumiya, M., Fuke, S., Furumochi, T., Lippmaa, M., Chia, C. H., Segawa, Y., Koinuma, H., and Kawasaki, M., Solid State Commun. 127, 265 (2003).Google Scholar
6. Thonke, K., Gruber, Th., Teofilov, N., Schonfelder, R., Waag, A., and Sauer, R., Physica B 308–310, 945 (2001).Google Scholar
7. Garces, N. Y., Giles, N. C., Halliburton, L. E., Cantwell, G., Eason, D. B., Reynolds, D. C., and Look, D. C., Appl. Phys. Lett. 80, 1334 (2002).Google Scholar
8. Garces, N. Y., Wang, Lijun, Giles, N. C., Halliburton, L. E., Cantwell, G., and Eason, D. B., J. Appl. Phys. 94, 519 (2003).Google Scholar
9. Barry Bebb, H. and Williams, E. W., in Semiconductors and Semimetals, edited by Willardson, R. K. and Beer, A. C. (Academic, New York, 1972), Vol. 8, pp. 330331.Google Scholar
10. Wang, Lijun and Giles, N. C., J. Appl. Phys. 94, 973 (2003).Google Scholar