Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T12:50:43.454Z Has data issue: false hasContentIssue false

Determination of the Mobile-Hydrogen Charge State in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  17 March 2011

Brent P. Nelsona
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401, USA
Yueqin Xu
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401, USA
Robert C. Reedy
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401, USA
Richard S. Crandall
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401, USA
A. Harv Mahan
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401, USA
Howard M. Branz
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401, USA
Get access

Abstract

We find that hydrogen diffuses as H+, H0, or H- in hydrogenated amorphous silicon depending on its location within the i-layer of a p-i-n device. We annealed a set of five p-i-n devices, each with a thin deuterium-doped layer at a different location in the i-layer, and observed the D-diffusion using secondary ionmass spectrometry (SIMS). When H-diffuses in a charged state, electric fields in the device strongly influence the direction and distance of diffusion. When D is incorporated into a device near the p-layer, almost all of the D-diffusion occurs as D+, and when the D is incorporated near the n-layer, most of the D-diffusion occurs as D-. We correlate the preferential direction of D-motion at given depth within the i-layer, with the local Fermi level (as calculated by solar cell simulations), to empirically determine an effective correlation energy for mobile-H electronic transitions of 0.39 ± 0.1 eV. Using this procedure, the best fit to the data produces a disorder broadening of the transition levels of ∼0.25 eV. The midpoint between the H0/+ and the H0/- transition levels is ∼0.20 ± 0.05 eV above midgap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.For a review of metastability models involving H-motion, see Branz, H.M., Phys. Rev. B 49, 8, (1999), 5498 Google Scholar
2.Hydrogen in Semiconductors, edited by Pankove, J.I. and Johnson, N.M., Semiconductors and Semimetals, Volume 34 (Academic, New York, 1991), especially J. Kakalios, 381Google Scholar
3. Biswas, R., Li, Q., Pan, B.C., and Yoon, Y., Phys. Rev. B 57, 4 1998, 2253 Google Scholar
4. Tavendale, A.J., Alexiev, D., and Williams, A.A., Appl. Phys. Lett. 47, 3 1985, 3168 Google Scholar
5. Seager, C.H. and R.A. Anderson, 53, 13 1988, 1181 Google Scholar
6. Tavendale, A.J., Pearton, S.J., and Williams, A.A., Appl. Phys. Lett. 56, 10 1990, 949 Google Scholar
7. Johnson, N.M. and Herring, C., Phys. Rev. B 46, 23, Rapid Comm. 1992, 1555415557 Google Scholar
8. Walle, C.G. Van de, Denteneer, P.J.H., Bar-Yam, Y., and Pantelides, S.T., Phys. Rev. B 39, 15 1989, 10791 Google Scholar
9. Deák, P., Snyder, L.C., and Corbett, J.W., Phys. Rev. B 43, 5, Rapid Com. 1991, 4545 10.1103/PhysRevB.43.4545Google Scholar
10. Janson, M.S., Hallén, A., Linnarsson, M.K., and Svensson, B.G., Phys. Rev. B 61, 11 2000, 7195 Google Scholar
11. Nickel, N.H. and Kaiser, I., Mater. Res. Soc. Proc. 557, San Francisco, CA, 1999 305.Google Scholar
12. Santos, P.V. and Johnson, N.M., Appl. Phys. Lett. 62, 7 1993, 720 10.1063/1.108849Google Scholar
13. Carlson, D.E. and Rajan, K., Appl. Phys. Lett. 68, 1 1996, 28 Google Scholar
14. Carlson, D.E. and Rajan, K., Appl. Phys. Lett. 69, 10 1996, 1147 10.1063/1.117610Google Scholar
15. Branz, H.M., Asher, S., an Nelson, B.P., Phys. Rev. B 47, 12 1993, 7061 Google Scholar
16. Kemp, M. and Branz, H.M., Phys. Rev. B 47, 12 1993, 7067 Google Scholar
17. Branz, H.M., Phys. Rev. B 60, 11 1999, 77257727 Google Scholar
18. Arch, J.K., Rubinelli, F.A., Hou, J.Y., and Fonash, S.J., J. App. Phys., 69, 10, (1991) 7057 Google Scholar
19. Branz, H.M. and Crandall, R.S., Solar Cells 27, 1989,159 Google Scholar
20. Branz, H.M. and Silver, M., Phys. Rev. B 42, 12 1990, 74207428 Google Scholar
21. Jackson, W.B., Solid State Comm. 44, 4 1982, 477480 10.1016/0038-1098(82)90127-2Google Scholar
22. Comber, P.G. Le and Spear, W.E., Phil. Mag. B 53, 1 (1986), L1–L7Google Scholar
23. Lee, J.-K. and Shiff, E.A., Phys. Rev. Lett. 68, 19 1992, 29722975 Google Scholar