Skip to main content Accessibility help
×
Home

Determination of Diffusivities of Si Self-Diffusion and Si Self-Interstitials using Isotopically Enriched Single-or Multi-30Si Epitaxial Layers

  • S. Matsumoto (a1), S.R. Aid (a1), T. Sakaguchi (a1), K. Toyonaga (a1), Y. Nakabayashi (a1), M. Sakuraba (a2), Y. Shimamune (a2), Y. Hashiba (a2), J. Murota (a2), K. Wada (a3) and T. Abe (a4)...

Abstract

Self-diffusivity of Si has been obtained over a wide temperature range (867°C-1300°C) using highly isotopically enriched 30Si epi-layers (99.88%) as a diffusion source into natural Si substrates. 30Si epi-layers were grown on both CZ-Si substrates and non-doped epi-layers grown on CZ-Si substrates using low pressure CVD with 30SiH4. Diffusion was performed in resistance-heated furnaces under a pure Ar atmosphere. After annealing, the concentrations of the respective Si isotopes were measured with secondary ion mass spectroscopy (SIMS). Diffusivity of 30Si (called Si self-diffusivity, DSD) was determined using a numerical fitting process with 30Si SIMS profiles. We found no major differences in self-diffusivity between bulk Si and epi-Si. Within the 867°C -1300°C range investigated, DSD can be described by an Arrhenius equation with one single activation enthalpy: DSD =14 exp (—4.37 eV/kT) cm2/s. The present result is in good agreement with that of Bracht et. al.

Diffusivity and thermal equilibrium concentration of Si self-interstitials have been determined using multi-30Si epi-layers consisting of alternative layers with isotopically pure 30Si and natural Si. The sample surface was oxidized and the Si self-interstitials were introduced from the surface. Spreading of 30Si spikes of each layer due to the diffusion of Si self-interstitials generated at the surface was measured with SIMS analysis. The diffusivity of Si self-interstitials, D I, is obtained by fitting with experimental results. In the temperature range between 820 -920°C, D I and thermal equilibrium concentration of Si self-interstitials, CIi, are described by the Arrhenius equations D I3.48×104 exp (—3.82eV/KT) cm2/s and C Ii= 9.62×1018 exp (—0.475eV/KT) cm-3, respectively.

Copyright

References

Hide All
1 Peart, R.F., Phys. Status Solidi 15, K119 (1966).
2 and, B.J. Masters Fairfield, J.M., Appl. Phys. Lett. 8, 280 (1966).
3 Fairfield, J.M. and Masters, B.J., J. Appl. Phys. 38, 3148 (1967).
4 Mayer, H.J., Mehrer, H. and Maier, K., Inst. Phys. Conf. Ser 31, 186 (1977).
5 Kalinowski, L. and Seguin, R., Appl. Phys. Lett. 35, (1979) 211
6 Hirvonen, J. and Anttila, A., Appl. Phys. Lett. 35, 703(1979).
7 Demond, F.J., Kalbitzer, S., Mannsperger, H. and Damjantschitsch, H., Phys. Lett. 93A, 503 (1983).
8 Tan, T.Y. and Gossele, U., Appl. Phys. A37, 1(1985).
9 Fahey, P.M., Grifin, P.B. and Plummer, J.D., Rev. Mod. Phys. 61, 289(1989).
10 Bracht, H., Haller, E.E. and Clark-Phelps, R., Phys. Rev. Lett. 81, 393(1998).
11 Ural, A., Griffin, P.B. and Plummer, J.D., Phys. Rev. Lett. 73, 1706(1999).
12 Nakabayashi, Y., Osman, H.I., Toyonaga, K., Yokota, K., Matsumoto, S., Murota, J., Wada, K. and Abe, T., Jpn. J. Appl. Phys. 42, 3304(2003).
13 Gossmann, H.-J. et al., J. Appl. Phys. 77, 1948(1995).
14 Levinshtein, M.E. and Rumyantsev, S.L.: Handbook Series on Semiconductor parameters (World Scientific, Singapore, 1996) Vol. 1, Chap. 1, p.1
15 Compaan, K. and Haven, Y., Trans. Faraday Soc. 54, 1498 (1958)
16 Compaan, K. and Haven, Y., Trans. Faraday Soc. 52, 786 (1956)
17 Pandey, K.C., Phys. Rev. Lett. 57, 2287 (1986)
18 Pandey, K.C. and Kaxiras, E., Phys. Rev. Lett. 66, 915 (1990)
19 Blochl, P.E., Smargiassi, E., Car, R., Laks, D.B., Andreoni, W., and Pantelides, S.T., Phys. Rev. Lett. 70, 2435 (1993)
20 Car, R., Kelly, P. J., Oshiyama, A., and Pantelides, S., Phys. Rev. Lett. 54, 360 (1985)
21 Kelly, P. J. and Car, R., Phys. Rev. B 45, 6543 (1992)
22 Mercer, J. L. and Chou, M. Y., Phys. Rev. B 47, 9366 (1993)
23 Batra, I. P., Abraham, F. F., and Ciraci, S., Phys. Rev. B 35, 9552 (1987)
24 Maroudas, D. and Brown, R. A., Appl. Phys. Lett. 62, 172 (1993)
25 Baskes, M. I., Nelson, J. S., and Wright, A. F., Phys. Rev. B 40, 6085(1989)
26 Frank, W., Gosele, U., Mehrer, H., and Seeger, A., in: Diffusion in Crystalline Solids, Eds. Murch, G. E. and Nowick, A. S. (Academic, New York, 1984) p. 63
27 Bracht, H., Stolwijk, N. A., and Mehrer, H., Phys. Rev. B 52, 16542 (1995)
28 Tang, M., Colombo, L., Zhu, J., and Rubia, T. Diaz de la, Phys. Rev. B 55, 14279 (1997)
29 Taniguchi, K. and Antoniadis, D. A., “Defects in Silicon”, p315, The Electrochemical Society (1983).
30 Stolwijk, N. A., Schuster, B., and Holzl, J., Appl. Phys. A33, 133 (1984).
31 Gosele, U., Frank, W., and Seeger, A., Appl. Phys. 23, 361(1980).
32 Morooka, M., and Kajiwara, T., Jpn. J. Appl. Phys. 42, 3311(2003).
33 Rasband, P. B. and Clancy, P., and Thompson, M. O., J. Appl. Phys. 79, 8998 (1996).
34 Johnson, M.D., Caturla, M. –J, and Rubia, T. Dias de la, J. Appl. Phys. 84, 1963(1998).
35 Cowern, N. E. B., Jansen, K. T. F., and Los, H. F. E., J. Appl. Phys. 68, 6191(1990).
36 Mattoni, A., Bernardini, F., and Colombo, L., Phys. Rev. B 66, 195214 (2002).
37 Morehead, F. F., Appl. Phys. Lett. 8, 280 (1966).
38 Bronner, G. B. and Plummer, J. D., J. Appl. Phys. 61, 5286 (1987).
39 Wada, K. and Inoue, N., J. Appl. Phys. 58, 1183 (1985).
40 Taniguchi, K., Antoniadis, D. A., and Matsushita, Y., Appl. Phys. Lett. 42, 961(1983).

Related content

Powered by UNSILO

Determination of Diffusivities of Si Self-Diffusion and Si Self-Interstitials using Isotopically Enriched Single-or Multi-30Si Epitaxial Layers

  • S. Matsumoto (a1), S.R. Aid (a1), T. Sakaguchi (a1), K. Toyonaga (a1), Y. Nakabayashi (a1), M. Sakuraba (a2), Y. Shimamune (a2), Y. Hashiba (a2), J. Murota (a2), K. Wada (a3) and T. Abe (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.