Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-20T13:01:53.674Z Has data issue: false hasContentIssue false

Detection of Titanium Silicide Formation and Phase Transformation by Picosecond Ultrasonics

Published online by Cambridge University Press:  25 February 2011

H. -N. Lin
Affiliation:
Department of Physics, Brown University, Providence, RI 02912
R. J. Stoner
Affiliation:
Department of Physics, Brown University, Providence, RI 02912
H. J. Maris
Affiliation:
Department of Physics, Brown University, Providence, RI 02912
J. M. E. Harper
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
C. Cabral Jr
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
J. -M. Halbout
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
G. W. Rubloff
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

Picosecond ultrasonics is employed to study the titanium silicide formation sequence for evaporated Ti films on silicon substrates annealed at temperatures between 300 and 800 °C. The measurements show significant differences in the ultrasonic echo pattern before and after the structural phases C49 and C54 are formed, thus indicating that picosecond ultrasonics is a sensitive non-destructive probe of silicide formation. The longitudinal sound velocity has been found to be (8.3 ± 0.2) × 105 cm/sec for C49 TiSi2, and about 5% lower for the C54 phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rubloff, G. W., Tromp, R. M., and van Loenen, E. J., Appl. Phys. Lett. 48, 1600 (1986).CrossRefGoogle Scholar
2. Beyers, R., and Sinclair, R., J. Appl. Phys. 57, 5240 (1985).CrossRefGoogle Scholar
3. Nemanich, R. J., Fiordalice, R. W., and Jeon, H., IEEE J. Quant. Elect. 25, 997 (1989).Google Scholar
4. Lin, H. -N., Stoner, R. J., and Maris, H. J., in IEEE 1990 Ultrasonics Symposium Proceedings, edited by McAvoy, B. R., pp. 13011307.Google Scholar
5. Grahn, H. T., Maris, H. J., and Taue, J., IEEE J. Quant. Elect. 25, 2562 (1989).Google Scholar
6. d'Heurle, F. M., Gas, P., Engstrom, I., Nygren, S., Ostling, M., and Petersson, C. S., IBM Research Report RC 11151, No. 50067 (1985).Google Scholar
7. Motakef, S., Harper, J. M. E., d'Heurle, F. M., Gallo, T. A., and Herbots, N., J. Appl. Phys. 70, 2660 (1991).Google Scholar
8. Auld, B. A., Acoustic Fields and Waves in Solids (John Wiley, New York, 1973), vol. 1, pp. 370371.Google Scholar
9. Murarka, S. P., Suicides for VLSI Applications (Academic, Orlando, 1983), p. 47.Google Scholar
10. Samsonov, G. V., and Vinitskii, I. M., Handbook of Refractory Compounds (Plenum, New York, 1980), p. 287. The phase of TiSi2 is not specified.CrossRefGoogle Scholar
11. Wessels, P. J. J., Jongste, J. F., Janssen, G. C. A. M., Mulder, A. L., Radelaar, S., and Loopstra, O. B., J. Appl. Phys. 63, 4979 (1988).CrossRefGoogle Scholar