Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-28T23:36:27.756Z Has data issue: false hasContentIssue false

Detection of Hydrogen in Bulk and Thin Film Silicon Dioxide by Hydrogen Nuclear Magnetic Resonance

Published online by Cambridge University Press:  22 February 2011

D. H. Levy
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
K. K. Gleason
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
Get access

Abstract

Hydrogen is a common impurity in silicon dioxide (SiO2) which can influence its optical and electronic properites. Here, nuclear magnetic resonance (NMR) is applied to study of hydrogen in these materials, despite their relatively low hydrogen content. We present results for bulk fused silica as well as thermally grown films of SiO2 on silicon. These experiments demonstrate the potential of solid state NMR for studying low hydrogen content film systems. In bulk fused silica, we have observed that although the majority of hydrogen is isolated, a small number of centers exist involving adjacent silanol pairs. These pairs react during high temperature annealing as well as during deep ultraviolet irradiation. Furthermore, the presence of these centers is related to the susceptibility of fused silica to radiation damage. The results obtained on the fused silica material are compared to SiO2 films on silicon. The NMR spectra and relaxation associated with thick (>1μm) wet SiO2 films are similar to those for the fused silica while the NMR data for thinner oxide more closely resembles those of surface water on silica gel.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, R. W., Phys. Chem. Glasses 5, 35 (1964).Google Scholar
2. Moulson, A. J. and Roberts, J. P., Trans. Faraday Soc. 57, 1208 (1961).Google Scholar
3. Walrafen, G. E. and Samanta, S. R., J. Chem. Phys. 69 (1), 493 (1978).Google Scholar
4. Rothschild, M., Ehrlich, D. J. and Shaver, D. C., Appl. Phys. Lett. 55, 1276 (1989).Google Scholar
5. Griscom, D. L., Stapelbroeck, M., and Friebele, E. J., J. Chem. Phys 78, 1638 (1983).Google Scholar
6. Irene, E. A., J. Electrochem. Soc, 125, 1708 (1979).Google Scholar
7. Samalam, V. K., Appl. Phys. Lett., 47, 736 (1985).Google Scholar
8. Revesz, A. G., J. Electrochem. Soc, 126, 122 (1979).Google Scholar
9. Lakshmanria, V., Vengurlekar, A. S., and Ramanathan, K. V., J. Appl. Phys., 62, 2337 (1987).Google Scholar
10. Poindexter, E.H. and Caplan, P.J., Prog. Surf. Sci. 14, 201 (1983).Google Scholar
11. Reed, M. L. and Plummer, J. D., Appl. Phys. Lett., 51, 514, (1987).Google Scholar
12. Reed, M. L. and Plummer, J. D., J. Appl. Phys., 63, 5776 (1988).Google Scholar
13. Briere, M. A. and Braunig, D., IEEE Trans. Nuc Sci., 37, 1658 (1990).Google Scholar
14. Marwick, A. D. and Young, D. R., J. Appl. Phys., 63, 2291 (1988).Google Scholar
15. Tsong, I. S. T., Monkowski, M. D., Monkowski, J. R., Miller, P. D., Moak, C. D., Appleton, B. R., and Wintenberg, A. L., “Investigation of Hydrogen and Chlorine at the Si/SiO2 Interface”, from The Preparation of MOS Insulators. Lucovsky, ed. (1980).Google Scholar
16. Magee, C. W. and Botnick, E. M., J. Vac. Sci. Technol., 19, 47 (1981).Google Scholar
17. Shanks, H., Fang, C. J., Ley, L., Cardona, M., Demond, F. J., Kalbitzer, S., Phys. Stat. Sol. (b), 100, 43 (1980).Google Scholar
18. Beckman, K. H. and Harrick, N. J., J. Electrochem. Soc, 118, 614 (1971).Google Scholar
19. Bartholomew, R. F. and Schreurs, J. W. H., J. Noncryst. Solids, 38–39, 679 (1980).Google Scholar
20. Eckert, H., Yesinowski, J. P., Silver, L. A., and Stolper, E. M., J. Phys. Chem., 92, 2055 (1988).Google Scholar
21. Levy, D. H., Gleason, K.K., Rothschild, M., Sedlacek, J. H. C., Appl. Phys. Lett., 60, 1667 (1992).Google Scholar
22. Hanus, F. and Gillis, P., J. Mag. Res., 59, 437 (1984).Google Scholar
23. Zimmerman, J. R., Holmes, B. G., and Lasater, J. A., J. Phys. Chem., 60, 1157 (1956).Google Scholar
24. Levy, D. H. and Gleason, K. K., J. Vac. Sci. and Technol. A, in press.Google Scholar
25. Farrar, T. C. and Becker, E. D., Pulse and Fourier Transform NMR: Introduction to Theory and Methods (Academic Press, New York, 1971), p. 25 Google Scholar
26. Conradi, M. S. and Norberg, R. E., Phys. Rev. B 24, 2285 (1981).Google Scholar
27. Abragam, A., Principles of Nuclear Magnetism. (Oxford Univ. Press, Oxford, 1961).Google Scholar
28. Bunker, B. C., Tallant, D. R., Headley, T. J., Turner, G. L., and Kirkpatrick, R. J., Phys. Chem. Glasses 29, 106 (1988).Google Scholar
29. Devine, R. A. B. and Arndt, J., Phys. Rev. B 39 (8), 5132 (1989).Google Scholar
30. Stapelbroeck, M., Griscom, D. L., Friebele, E. J., and Sigel, G. H. Jr, J. Non-Cryst. Solids 32, 313 (1979).Google Scholar
31. Levy, D.H., Gleason, K.K., Rothchild, M., and Sedlacek, J.H., J. Appl. Phys. submitted.Google Scholar
32. Burkhardt, P. J., J. Electrochem. Soc, 114, 196 (1967).Google Scholar