Skip to main content Accessibility help

Detection of Hydrogen in Bulk and Thin Film Silicon Dioxide by Hydrogen Nuclear Magnetic Resonance

  • D. H. Levy (a1) and K. K. Gleason (a1)


Hydrogen is a common impurity in silicon dioxide (SiO2) which can influence its optical and electronic properites. Here, nuclear magnetic resonance (NMR) is applied to study of hydrogen in these materials, despite their relatively low hydrogen content. We present results for bulk fused silica as well as thermally grown films of SiO2 on silicon. These experiments demonstrate the potential of solid state NMR for studying low hydrogen content film systems. In bulk fused silica, we have observed that although the majority of hydrogen is isolated, a small number of centers exist involving adjacent silanol pairs. These pairs react during high temperature annealing as well as during deep ultraviolet irradiation. Furthermore, the presence of these centers is related to the susceptibility of fused silica to radiation damage. The results obtained on the fused silica material are compared to SiO2 films on silicon. The NMR spectra and relaxation associated with thick (>1μm) wet SiO2 films are similar to those for the fused silica while the NMR data for thinner oxide more closely resembles those of surface water on silica gel.



Hide All
1. Lee, R. W., Phys. Chem. Glasses 5, 35 (1964).
2. Moulson, A. J. and Roberts, J. P., Trans. Faraday Soc. 57, 1208 (1961).
3. Walrafen, G. E. and Samanta, S. R., J. Chem. Phys. 69 (1), 493 (1978).
4. Rothschild, M., Ehrlich, D. J. and Shaver, D. C., Appl. Phys. Lett. 55, 1276 (1989).
5. Griscom, D. L., Stapelbroeck, M., and Friebele, E. J., J. Chem. Phys 78, 1638 (1983).
6. Irene, E. A., J. Electrochem. Soc, 125, 1708 (1979).
7. Samalam, V. K., Appl. Phys. Lett., 47, 736 (1985).
8. Revesz, A. G., J. Electrochem. Soc, 126, 122 (1979).
9. Lakshmanria, V., Vengurlekar, A. S., and Ramanathan, K. V., J. Appl. Phys., 62, 2337 (1987).
10. Poindexter, E.H. and Caplan, P.J., Prog. Surf. Sci. 14, 201 (1983).
11. Reed, M. L. and Plummer, J. D., Appl. Phys. Lett., 51, 514, (1987).
12. Reed, M. L. and Plummer, J. D., J. Appl. Phys., 63, 5776 (1988).
13. Briere, M. A. and Braunig, D., IEEE Trans. Nuc Sci., 37, 1658 (1990).
14. Marwick, A. D. and Young, D. R., J. Appl. Phys., 63, 2291 (1988).
15. Tsong, I. S. T., Monkowski, M. D., Monkowski, J. R., Miller, P. D., Moak, C. D., Appleton, B. R., and Wintenberg, A. L., “Investigation of Hydrogen and Chlorine at the Si/SiO2 Interface”, from The Preparation of MOS Insulators. Lucovsky, ed. (1980).
16. Magee, C. W. and Botnick, E. M., J. Vac. Sci. Technol., 19, 47 (1981).
17. Shanks, H., Fang, C. J., Ley, L., Cardona, M., Demond, F. J., Kalbitzer, S., Phys. Stat. Sol. (b), 100, 43 (1980).
18. Beckman, K. H. and Harrick, N. J., J. Electrochem. Soc, 118, 614 (1971).
19. Bartholomew, R. F. and Schreurs, J. W. H., J. Noncryst. Solids, 38–39, 679 (1980).
20. Eckert, H., Yesinowski, J. P., Silver, L. A., and Stolper, E. M., J. Phys. Chem., 92, 2055 (1988).
21. Levy, D. H., Gleason, K.K., Rothschild, M., Sedlacek, J. H. C., Appl. Phys. Lett., 60, 1667 (1992).
22. Hanus, F. and Gillis, P., J. Mag. Res., 59, 437 (1984).
23. Zimmerman, J. R., Holmes, B. G., and Lasater, J. A., J. Phys. Chem., 60, 1157 (1956).
24. Levy, D. H. and Gleason, K. K., J. Vac. Sci. and Technol. A, in press.
25. Farrar, T. C. and Becker, E. D., Pulse and Fourier Transform NMR: Introduction to Theory and Methods (Academic Press, New York, 1971), p. 25
26. Conradi, M. S. and Norberg, R. E., Phys. Rev. B 24, 2285 (1981).
27. Abragam, A., Principles of Nuclear Magnetism. (Oxford Univ. Press, Oxford, 1961).
28. Bunker, B. C., Tallant, D. R., Headley, T. J., Turner, G. L., and Kirkpatrick, R. J., Phys. Chem. Glasses 29, 106 (1988).
29. Devine, R. A. B. and Arndt, J., Phys. Rev. B 39 (8), 5132 (1989).
30. Stapelbroeck, M., Griscom, D. L., Friebele, E. J., and Sigel, G. H. Jr, J. Non-Cryst. Solids 32, 313 (1979).
31. Levy, D.H., Gleason, K.K., Rothchild, M., and Sedlacek, J.H., J. Appl. Phys. submitted.
32. Burkhardt, P. J., J. Electrochem. Soc, 114, 196 (1967).

Detection of Hydrogen in Bulk and Thin Film Silicon Dioxide by Hydrogen Nuclear Magnetic Resonance

  • D. H. Levy (a1) and K. K. Gleason (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed