Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-23T09:53:31.466Z Has data issue: false hasContentIssue false

Detailed Photoluminescence Studies of Heat-Treated InP

Published online by Cambridge University Press:  03 September 2012

Klaus Pressel
Affiliation:
4. Physikal. Institut, Universität Stuttgart, 7000 Stuttgart 80, Germany
C. Hiller
Affiliation:
4. Physikal. Institut, Universität Stuttgart, 7000 Stuttgart 80, Germany
G. Bohnert
Affiliation:
4. Physikal. Institut, Universität Stuttgart, 7000 Stuttgart 80, Germany
F. Prinz
Affiliation:
4. Physikal. Institut, Universität Stuttgart, 7000 Stuttgart 80, Germany
A. Dörnen
Affiliation:
4. Physikal. Institut, Universität Stuttgart, 7000 Stuttgart 80, Germany
Get access

Abstract

We present highly resolved photoluminescence studies on heat-treated nominally undoped InP, which was either unprotected or protected by SiO2 or Si3N4 caps during the annealing procedures. Annealing of InP above 350°C leads to six different sharp emissions in the wavelength range between 8790 and 8900 Å, which are not observed at 4 K in Zn-doped or Fe-doped samples. Based on temperature-dependent photoluminescence studies, time-resolved measurements and preliminary magnetic field studies we ascribe these emissions to isoelectronic bound exciton transitions. It is also shown that the two emissions at 8883 Å (11254 cm-1) (E) and 8889 Å (11246 cm-1) (F) belong to one center. We observe that the lines not only depend on the heat treatment but also on some unintentionally incorporated or residual impurities of a low concentration level. Possible candidates are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kim, T. S., Lester, S. D., and Streetman, B. G., J. Appl. Phys. 61, 4598 (1987)CrossRefGoogle Scholar
[2] Fischbach, J. U., Benz, G., Stath, N., and Pilkuhn, M. H., Solid State Commun. 11, 725 (1972).CrossRefGoogle Scholar
[3] Skromme, B. J. and Stillman, G. E., Phys. Rev. B 28, 4602 (1983).CrossRefGoogle Scholar
[4] Skromme, B. J., Low, T. S., Roth, T. J., Stillman, G. E., Kennedy, J. K., and Abrokwah, J. K., J. Electron. Mater. 12, 433 (1983).CrossRefGoogle Scholar
[5] Bandet, J., Fabre, F., Frandon, J., Bacquet, G., and Reynaud, F., Solid State Commun. 54, 767 (1985).CrossRefGoogle Scholar
[6] Frandon, J., Fabre, F., Bacquet, G., Bandet, J., and Reynaud, F., J. Appl. Phys. 59, 1627 (1986).CrossRefGoogle Scholar
[7] White, A. M., Dean, P. J., Fairhurst, K. M., Bardsley, W., B. Day. J. Phys. C, 7, L35 (1974)CrossRefGoogle Scholar
[8] Riihle, W., Schmid, W., Meek, R., Stath, N., Fischbach, J. U., Strottner, I., Benz, K. W., and Pilkuhn, M. Phys., Rev. B 18, 7022 (1978)Google Scholar